1 resultado para Graphic consistency
Filtro por publicador
- Rhode Island School of Design (5)
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (2)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (3)
- Aston University Research Archive (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (44)
- Boston University Digital Common (3)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- Cambridge University Engineering Department Publications Database (8)
- CentAUR: Central Archive University of Reading - UK (28)
- Center for Jewish History Digital Collections (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (7)
- Digital Howard @ Howard University | Howard University Research (1)
- DigitalCommons@The Texas Medical Center (3)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (13)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (54)
- Helda - Digital Repository of University of Helsinki (13)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (37)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Línguas & Letras - Unoeste (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (4)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (16)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (20)
- Queensland University of Technology - ePrints Archive (444)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (14)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (2)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (74)
- University of Queensland eSpace - Australia (13)
- University of Southampton, United Kingdom (4)
- University of Washington (2)
- WestminsterResearch - UK (3)
Resumo:
Collecting ground truth data is an important step to be accomplished before performing a supervised classification. However, its quality depends on human, financial and time ressources. It is then important to apply a validation process to assess the reliability of the acquired data. In this study, agricultural infomation was collected in the Brazilian Amazonian State of Mato Grosso in order to map crop expansion based on MODIS EVI temporal profiles. The field work was carried out through interviews for the years 2005-2006 and 2006-2007. This work presents a methodology to validate the training data quality and determine the optimal sample to be used according to the classifier employed. The technique is based on the detection of outlier pixels for each class and is carried out by computing Mahalanobis distances for each pixel. The higher the distance, the further the pixel is from the class centre. Preliminary observations through variation coefficent validate the efficiency of the technique to detect outliers. Then, various subsamples are defined by applying different thresholds to exclude outlier pixels from the classification process. The classification results prove the robustness of the Maximum Likelihood and Spectral Angle Mapper classifiers. Indeed, those classifiers were insensitive to outlier exclusion. On the contrary, the decision tree classifier showed better results when deleting 7.5% of pixels in the training data. The technique managed to detect outliers for all classes. In this study, few outliers were present in the training data, so that the classification quality was not deeply affected by the outliers.