2 resultados para Fusão de classificadores
Resumo:
A degradação das pastagens pode ser definida como um processo evolutivo de perda de vigor, produtividade e capacidade de recuperação natural, e é atualmente um dos maiores problemas para a pecuária brasileira. Estudos recentes com imagens de satélites de sensoriamento remoto apresentam resultados promissores para identificar e mapear diferentes níveis de degradação em pastagens. Estas imagens também permitem monitor ao longo dos anos o processo de degradação em escala local ou regional. O objetivo do presente estudo consiste em avaliar o uso de imagens fusionadas dos sensores HRC e CCD do satélite CBERS-2B, para identificar e caracterizar áreas com pastagens degradadas nos municípios de Corguinho e Rio Negro no Estado de Mato Grosso do Sul. As imagens foram processadas utilizando o aplicativo SPRING. A classificação foi baseada na segmentação, no MAXVER e na Bhattacharya gerando um mapa temático das áreas de pastagens degradadas na escala de 1:50.000.
Resumo:
RESUMO - Métodos de reconhecimento de frutos baseados na utilização de diferentes descritores e classificadores foram estudados. Foi utilizada uma base de dados de 3.393 imagens de café e não-café anteriormente criada e rotulada manualmente. Testes quantitativos demonstraram a identificação de bagas com 93% de precisão e 77% de cobertura utilizando descritores HoG adicionados a mediana dos componentes de cor do formato La*b*, aliados ao classificador Gradient Boosting. Esses resultados melhoram o método anteriormente proposto por Santos (2015), e demonstram a possibilidade de evolução de métodos que podem ser aplicados em metodologias de agricultura de precisão, monitoramento e predição de safra.