6 resultados para EXPRESSÃO GÊNICA


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neste trabalho, os genes 18S, beta-actina, gapdh e ef1alfa do tambaqui foram clonados e sequenciados, visando à obtenção e validação de genes de referência, candidatos aos estudos genômicos e de fisiologia na espécie.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to investigate the genetic bases of the physiological syndrome mealiness that causes abnormal fruit softening and juice loss in apples, an integrative approach was devised, consisting of sensory, instrumental, biochemical, genetic, and genomic methods. High levels of activity of a-L-arabinofuranosidase (a-AFase), a hydrolase acting on the pectic component of the cell walls, were found in individuals exhibiting the mealiness phenotype in a segregating population. The expression levels of the previously uncharacterized apple AF gene MdAF3 are higher in fruits from plants consistently showing mealiness symptons and high a-AFase activity. The transcription of MdAF3 is differentially regulated in distinct genomic contexts and appears to be independent of ethylene. Thus, it is likely to be controlled by endogenous developmental mechanisms associated with fruit ripening. The use of integrative approaches has allowed the identification of a novel contributor to the mealiness phenotype in apple and it has been possible to overcome the problems posed by the unavailability of near-isogenic lines to dissect the genetic bases of a complex physiological trait in woody perennial species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The myogenic differentiation 1 gene (MYOD1) has a key role in skeletal muscle differentiation and composition through its regulation of the expression of several muscle-specific genes. We first used a general linear mixed model approach to evaluate the association of MYOD1 expression levels on individual beef tenderness phenotypes. MYOD1 mRNA levels measured by quantitative polymerase chain reactions in 136 Nelore steers were significantly associated (P ? 0.01) with Warner?Bratzler shear force, measured on the longissimus dorsi muscle after 7 and 14 days of beef aging. Transcript abundance for the muscle regulatory gene MYOD1 was lower in animals with more tender beef. We also performed a coexpression network analysis using whole transcriptome sequence data generated from 30 samples of longissimus muscle tissue to identify genes that are potentially regulated by MYOD1. The effect of MYOD1 gene expression on beef tenderness may emerge from its function as an activator of muscle-specific gene transcription such as for the serum response factor (C-fos serum response element-binding transcription factor) gene (SRF), which determines muscle tissue development, composition, growth and maturation.