5 resultados para Distribution management systems
Resumo:
2016
Resumo:
Coffea sp. is cultivated in large areas, using both conventional and organic management. However, information about the sustainability of these two management systems is still deficient. The objective of the present study was to evaluate the physical properties of soil cultivated with Conilon coffee (C. canephora) under organic and conventional management. Two areas cultivated with Conilon coffee (under organic and conventional management) and a fragment of Atlantic forest, used as a reference, were selected for the experiment. Soil granulometry, hydraulic conductivity, water retention curve, resistance to penetration, porosity, optimal hydric interval, and other physical characteristics were measured at depths of 0 to 10 and 10 to 20 cm. The data was submitted to multivariate and descriptive statistical analyses. Higher similarity was observed between the soil cultivated with Conilon coffee under organic management and the Atlantic forest soil. Soil resistance to penetration at 10, 30, 100, 500 and 1500 kPa, macro porosity, density and total porosity were the main physical properties that differentiated both management systems studied. The non-use of agricultural machinery and the addition of organic matter may be the main reasons for higher soil sustainability observed under organic management when compared with the conventional system.
Soil management systems for sustainable melon cropping in the Submedian of the São Francisco Valley.
Resumo:
Changes in soils management systems, including the application of green manure, are able to increase crop productivity. The aim of this study was to propose a soil management system with the use of green manure to improve the nutritional status and melon productivity in the submedian of the São Francisco Valley. The experiment was installed in Typic Plinthustalf and conducted in split plot. There were two soil tillage systems, tillage (T) and no tillage (NT), and three types of green manure (two vegetal cocktails: VC1- 75% legumes (L) + 25% non-legumes (NL); VC2- 25% L+ 75% NL and spontaneous vegetation (SV)). The experimental design was a randomised block with four replications. Fourteen species of legumes, grasses and oilseeds were used for the composition of the plant cocktails. We evaluated production of the dry shoot and root biomass and carbon and nutrient accumulation by green manures and melon plant. Data were subjected to analysis of variance and the treatment means were compared by Tukey´s test (P<0.05). Shoot biomass production and carbon and nutrient accumulation were higher in plant mixtures compared to spontaneous vegetation. The root system of the plant cocktails added larger quantities of biomass and nutrients to the soil to a depth of 0.60 m when compared to the spontaneous vegetation. The cultivation of plant cocktails with soil tillage, regardless of their composition, is a viable alternative for adding biomass and nutrients to the soil in melon crops in semi-arid conditions, providing productivity increases.
Resumo:
ABSTRACT: The study of labile carbon fractions (LCF) provides an understanding of the behavior of soil organic matter (SOM) under different soil management systems and cover crops. The aim of this study was to assess the effect of different soil management systems with respect to tillage, cover crop and phosphate fertilization on the amount of the LCF of SOM. Treatments consisted of conventional tillage (CT) and no-tillage (NT) with millet as the cover crop and a no-tillage system with velvet bean at two phosphorus dosages. Soil samples were collected and analyzed for organic carbon (OC), C oxidizable by KMnO4 (C-KMnO4), particulate OC (POC), microbial biomass carbon and light SOM in the 0.0-0.05, 0.05-0.10 and 0.10-0.20 m soil layers. The Carbon Management Index (CMI) was calculated to evaluate the impacts of soil management treatments on the quality of the SOM. The different LCFs are sensitive to different soil management systems, and there are significant correlations between them. C-KMnO4 is considered the best indicator of OC carbon lability. In the soil surface layers, the CT reduced the carbon content in all of the labile fractions of the SOM. The use of phosphorus led to the accumulation of OC and carbon in the different soil fractions regardless of the tillage system or cover crop. The application of phosphate fertilizer improved the ability of the NTsystem to promote soil quality, as assessed by the CMI.
Resumo:
Introduction to Animal GRIN; Navigating the Database; Setting Up the Database (Super Users); Create Taxonomy Structure; Set Up Location Structure; Form Descriptions (All Users); Form Descriptions (Super Users); Entering Shipments; E-R Diagram for Incoming Orders; Entering Requests; Reports.