6 resultados para Climate monitoring and alerting
Resumo:
The starting point for this study was the consideration of future climate change scenarios and their uncertainties. The paper presents the global projections from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and compares them with regional scenarios (downscaling) developed by the Brazilian National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais - INPE), with a focus on two main IPCC scenarios (RCP4.5 and RCP8.5) and two main global models (MIROC and Hadley Centre) for the periods 2011-2040 and 2041-2070. It aims to identify the main trends in terms of changes in temperature and precipitation for the North and Northeast regions of Brazil (more specifically, in the Amazon, semi-arid and cerrado biomes).
Resumo:
Earth climate has changed significantly in the last century and the different models indicate that it will continue to change over the next decades, even if the emission of greenhouse gases stop immediately. These changes have impact on different plant populations, as well as in the actual distribution of several species. As plants, in general, have a smaller capacity of dispersion compared with the animals it is likely that they will suffer the impacts of the climate change more intensively.
Resumo:
Summary: Climate change has a potential to impact rainfall, temperature and air humidity, which have relation to plant evapotranspiration and crop water requirement. The purpose of this research is to assess climate change impacts on irrigation water demand, based on future scenarios derived from the PRECIS (Providing Regional Climates for Impacts Studies), using boundary conditions of the HadCM3 submitted to a dynamic downscaling nested to the Hadley Centre regional circulation model HadRM3P. Monthly time series for average temperature and rainfall were generated for 1961-90 (baseline) and the future (2040). The reference evapotranspiration was estimated using monthly average temperature. Projected climate change impact on irrigation water demand demonstrated to be a result of evapotranspiration and rainfall trend. Impacts were mapped over the target region by using geostatistical methods. An increase of the average crop water needs was estimated to be 18.7% and 22.2% higher for 2040 A2 and B2 scenarios, respectively. Objective ? To analyze the climate change impacts on irrigation water requirements, using downscaling techniques of a climate change model, at the river basin scale. Method: The study area was delimited between 4º39?30? and 5º40?00? South and 37º35?30? and 38º27?00? West. The crop pattern in the target area was characterized, regarding type of irrigated crops, respective areas and cropping schedules, as well as the area and type of irrigation systems adopted. The PRECIS (Providing Regional Climates for Impacts Studies) system (Jones et al., 2004) was used for generating climate predictions for the target area, using the boundary conditions of the Hadley Centre model HadCM3 (Johns et al., 2003). The considered time scale of interest for climate change impacts evaluation was the year of 2040, representing the period of 2025 to 2055. The output data from the climate model was interpolated, considering latitude/longitude, by applying ordinary kriging tools available at a Geographic Information System, in order to produce thematic maps.
Resumo:
2016
Resumo:
Projected change in forage production under a range of climate scenarios is important for the evaluation of the impacts of global climate change on pasture-based livestock production systems in Brazil. We evaluated the effects of regional climate trends on Panicum maximum cv. Tanzânia production, predicted by agro-meteorological model considering the sum of degree days and corrected by a water availa bility index. Data from Brazilian weather stations (1963?2009) were considered as the current climate (baseline), and future scenarios, based on contrasting scenarios interms of increased temperature and atmospheric CO2 concentrations (high and low increases), were determined for 2013?2040 (2025 scenario) and for 2043?2070 (2055 scenario). Predicted baseline scenarios indicated that there are regional and seasonal variations in P. maximum production related to variation intemperature and water availability during the year. Production was lower in the Northeast region and higher in the rainforest area. Total annual productionunder future climate scenarios was predicted toincrease by up to 20% for most of the Brazilian area, mainly due to temperature increase, according to each climate model and scenario evaluated. The highest increase in forage production is expected to be in the South, Southeast and Central-west areas of Brazil. In these regions, future climate scenarios will not lead to changes in the seasonal production, with largerincreases in productivity during the summer. Climate risk is expected to decrease, as the probability of occurrence of low forage productions will be lower. Due to the predicted increase in temperature and decrease in rainfall in the Northeast area, P. maximum production is expected to decrease, mainly when considering scenarios based on the PRECIS model for the 2055 scenario.
Resumo:
The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.