7 resultados para Calibração radiométrica
Resumo:
2009
Resumo:
O levantamento e a análise da espacialização dos atributos do solo através de ferramentas de geoestatística são fundamentais para que cada hectare de terra seja cultivado segundo as suas reais aptidões. As imagens de radar de abertura sintética (SAR) têm um grande potencial para a estimação de umidade do solo e, desta forma, estes sensores podem auxiliar no mapeamento de propriedades físicas e físico-hídricas dos solos. O objetivo geral deste estudo foi avaliar o potencial de utilização de imagens de radar (micro-ondas) ALOS/PALSAR na identificação de solos em uma área da Formação Botucatu, dominada por solos de textura arenosa e média no município de Mineiros - GO. A área tem aproximadamente 946 ha, com o relevo da região variando de plano a suave ondulado e geologia da área é composta basicamente, por Arenitos da Formação Botucatu. No presente estudo foram amostrados 84 pontos para calibração e 25 pontos para validação, coletados nas profundidades de 0-20 cm e 60-80 cm. As amostras de solo analisadas para a determinação de areia, silte, argila, capacidade de campo (CC), ponto de murcha permanente (PMP) e água total disponível (AD). Para o desenvolvimento do trabalho foram adquiridas imagens de cinco datas e diferentes polarizações, totalizando 14 imagens, que foram processadas para a correção geométrica e correção radiométrica, utilizando o MDE. Também foram gerados covariáveis dos atributos do terreno: elevação (ELEV), declividade (DECLIV), posição relativa da declividade (PR-DECL), distância vertical do canal de drenagem (DVCD), fator-ls (FATOR-LS) e distância euclidiana (D-EUCL). A predição dos atributos do solo foi realizada utilizando os métodos Random Forest (RF) e Random Forest Krigagem (RFK), tendo como covariáveis preditoras as imagens de radar e os atributos do terreno. O processamento das imagens do radar ALOS/PALSAR possibilitou as correções geométrica e radiométrica, transformando os dados em unidades de coeficiente de retroespalhamento (?º) corrigidos pelo modelo digital de elevação (MDE). As imagens adquiridas representaram de forma ampla as variações de ?º ocorridos em diferentes datas. Os solos da área de estudo são predominantemente arenosos, com a maioria dos pontos amostrados classificados como NEOSSOLOS QUARTZARÊNICOS, seguidos dos LATOSSOLOS. Os modelos RF empregados para a predição dos atributos físicos e físico-hídricos dos solos proporcionaram a análise da contribuição das covariáveis preditoras. Os atributos do terreno que exerceram maior influência na predição dos atributos estudados estão relacionados à elevação. As imagens de 03/05/2009 (HH1, VV1, HV1 e VH1) e 26/09/2010 (HH3 e HV3), obtidas em períodos mais secos, tiveram melhores correlações com os atributos do solo. As análises dos semivariogramas dos resíduos da predição dos modelos RF demonstraram maior dependência espacial na camada de 60 a 80 cm. A abordagem da Krigagem somada ao modelo RF contribuíram para a melhoria da predição dos atributos areia, argila, CC e PMP. O uso de imagens de radar ALOS/PALSAR e atributos do terreno como covariáveis em modelos RFK mostrou potencial para estimar os atributos físicos (areia e argila) e físico-hídricos (CC e PMP), que podem auxiliar no mapeamento de solos associados aos materiais de origem da Formação Botucatu.
Resumo:
2016
Resumo:
Diversas técnicas analíticas podem ser usadas na determinação carbono do solo, predominando no Brasil métodos baseados na oxidação da matéria orgânica na presença de dicromato de potássio em meio ácido ou na análise elementar. O objetivo deste trabalho foi avaliar a viabilidade da estimativa do teor de carbono em solos da bacia do Acre por meio de espectroscopia NIR combinada com calibração por análise multivariada. Foram utilizadas 190 amostras de solos, coletadas em diversas localidades da bacia do Acre, para testar a espectroscopia NIR na determinação de teor de carbono no solo, comparativamente aos métodos de oxidação por dicromato em meio ácido e a análise elementar. Tomando-se como referência o método do analisador elementar, verifica-se que o método da oxidação recuperou, em média, 63,8 % do carbono determinado pelo método de referência. Sugere-se que para determinação do teor total de carbono solo a partir do método da oxidação seja adotado o coeficiente de 1,55 para corrigir os valores para o total de carbono do solo. Quanto ao uso da espectroscopia NIR, o modelo desenvolvido para análise de carbono de solos da bacia do Acre por espectroscopia NIR apresentou classificação boa segundo os valores de R e classificação excelente segundo os valores de RMSEC < RMSEP e RPD, tendo como referência o carbono determinado pelo método da análise elementar.
Resumo:
Uma vez que as técnicas cromatográficas permitem a separação, quantificação e identificação dos compostos organicos parentais e dos produtos de degradação e, considerando-se que a maioria dos fungicidas benzimidazois absorvem fortemente a luz ultra-violeta, testou-se o método de Cromatografia Liquida de Alta Eficiência (CLAE), para quantificar a biodegradabilidade do fungicida carbendazim. Neste experimento foi utilizada uma linhagem de Alternaria alternata isolada de solos agrícolas suplementados com benomil. Os frascos com os microorganismos crescidos foram repicados para frascos contendo meios de cultura batata-dextrose (50%) + carbendazim (100mg/ml). Estes foram incubados sob agitacao a 28oC mais ou menos 1oC por períodos de 2,4,7,15 e 30 dias. Apos extração e purificação das amostras procedeu-se a analise cromatográfica. Para tanto utilizou-se uma coluna de troca cationica nas seguintes condições: temperatura da coluna: 40oC, fase móvel: fosfato de amônio 0,0125M com fluxo de 0,2ml por minuto e detector de absorbância operando a 280nm. Sob estas condições, o tempo de retenção de carbendazim e 2 amino-benzimidazol foi de aproximadamente 4,5 e 6,3 minutos, respectivamente. A quantificação foi feita utilizando-se regressão linear de curvas de calibração obtidas em soluções padrões de carbendazim versus a resposta (altura ou área do pico), obtida no cromatograma. A confirmação da identidade do pico com alto grau de confiança foi possível pela comparação do tempo de retenção e o espectro de absorbância em ultra-violeta do carbendazim. Este espectro, em diferentes condições de cultivo de A alternata, indicou índices de similaridade da molécula variando de 0,99 a 1 entre as diferentes amostras. Por este método foram obtidas recuperações acima de 70% da concentração inicial de carbendazim. A degradação de carbendazim foi de 66,4% aos dois dias de incubação.
Resumo:
Espécies forrageiras adaptadas às condições semiáridas são uma alternativa para reduzir os impactos negativos na cadeia produtiva de ruminantes da região Nordeste brasileira devido à sazonalidade na oferta de forragem, além de reduzir custo com o fornecimento de alimentos concentrados. Dentre as espécies, a vagem de algaroba (Prosopis juliflora SW D.C.) e palma forrageira (Opuntia e Nopalea) ganham destaque por tolerarem o déficit hídrico e produzirem em períodos onde a oferta de forragem está reduzida, além de apresentam bom valor nutricional e serem bem aceitas pelos animais. Porém, devido à variação na sua composição, seu uso na alimentação animal exige o conhecimento profundo da sua composição para a elaboração de dietas balanceadas. No entanto, devido ao custo e tempo para análise, os produtores não fazem uso da prática de análise da composição químico-bromatológica dos alimentos. Por isto, a espectroscopia de reflectância no infravermelho próximo (NIRS) representa uma importante alternativa aos métodos tradicionais. Objetivou-se com este estudo desenvolver e validar modelos de predição da composição bromatológica de vagem de algaroba e palma forrageira baseados em espectroscopia NIRS, escaneadas em dois modelos de equipamentos e com diferentes processamentos da amostra. Foram coletadas amostras de vagem de algaroba nos estados do Ceará, Bahia, Paraíba e Pernambuco, e amostras de palma forrageira nos estados do Ceará, Paraíba e Pernambuco, frescas (in natura) ou pré-secas e moídas. Para obtenção dos espectros utilizaram-se dois equipamentos NIR, Perten DA 7250 e FOSS 5000. Inicialmente os alimentos foram escaneados in natura em aparelho do modelo Perten, e, com o auxílio do software The Unscrambler 10.2 foi selecionado um grupo de amostras para o banco de calibração. As amostras selecionadas foram secas e moídas, e escaneadas novamente em equipamentos Perten e FOSS. Os valores dos parâmetros de referência foram obtidos por meio de metodologias tradicionalmente aplicadas em laboratório de nutrição animal para matéria seca (MS), matéria mineral (MM), matéria orgânica (MO), proteína bruta (PB), estrato etéreo (EE), fibra solúvel em detergente neutro (FDN), fibra solúvel em detergente ácido (FDA), hemicelulose (HEM) e digestibilidade in vitro da matéria seca (DIVMS). O desempenho dos modelos foi avaliado de acordo com os erros médios de calibração (RMSEC) e validação (RMSECV), coeficiente de determinação (R2 ) e da relação de desempenho de desvio dos modelos (RPD). A análise exploratória dos dados, por meio de tratamentos espectrais e análise de componentes principais (PCA), demonstraram que os bancos de dados eram similares entre si, dando segurança de desenvolver os modelos com todas as amostras selecionadas em um único modelo para cada alimento, algaroba e palma. Na avaliação dos resultados de referência, observou-se que a variação dos resultados para cada parâmetro corroboraram com os descritos na literatura. No desempenho dos modelos, aqueles desenvolvidos com pré-processamento da amostra (pré-secagem e moagem) se mostraram mais robustos do que aqueles construídos com amostras in natura. O aparelho NIRS Perten apresentou desempenho semelhante ao equipamento FOSS, apesar desse último cobrir uma faixa espectral maior e com intervalos de leituras menores. A técnica NIR, associada ao método de calibração multivariada de regressão por meio de quadrados mínimos (PLS), mostrou-se confiável para prever a composição químico-bromatológica de vagem de algaroba e da palma forrageira. Abstract: Forage species adapted to semi-arid conditions are an alternative to reduce the negative impacts in the feed supply for ruminants in the Brazilian Northeast region, due to seasonality in forage availability, as well as in the reducing of cost by providing concentrated feedstuffs. Among the species, mesquite pods (Prosopis juliflora SW DC) and spineless cactus (Opuntia and Nopalea) are highlighted for tolerating the drought and producion in periods where the forage is scarce, and have high nutritional value and also are well accepted by the animals. However, its use in animal diets requires a knowledge about its composition to prepare balanced diets. However, farmers usually do not use feed composition analysis, because their high cost and time-consuming. Thus, the Near Infrared Reflectance Spectroscopy in the (NIRS) is an important alternative to traditional methods. The objective of this study to develop and validate predictive models of the chemical composition of mesquite pods and spineless cactus-based NIRS spectroscopy, scanned in two different spectrometers and sample processing. Mesquite pods samples were collected in the states of Ceará, Bahia, Paraiba and Pernambuco, and samples of forage cactus in the states of Ceará, Paraíba and Pernambuco. In order to obtain the spectra, it was used two NIR equipment: Perten DA 7250 and FOSS 5000. sSpectra of samples were initially obtained fresh (as received) using Perten instrument, and with The Unscrambler software 10.2, a group of subsamples was selected to model development, keeping out redundant ones. The selected samples were dried and ground, and scanned again in both Perten and FOSS instruments. The values of the reference analysis were obtained by methods traditionally applied in animal nutrition laboratory to dry matter (DM), mineral matter (MM), organic matter (OM), crude protein (CP), ether extract (EE), soluble neutral detergent fiber (NDF), soluble acid detergent fiber (ADF), hemicellulose ( HEM) and in vitro digestibility of dry matter (DIVDM). The performance of the models was evaluated according to the Root Mean Square Error of Calibration (RMSEC) and cross-validation (RMSECV), coefficient of determination (R2 ) and the deviation of Ratio of performance Deviation of the models (RPD). Exploratory data analysis through spectral treatments and principal component analysis (PCA), showed that the databases were similar to each other, and may be treated asa single model for each feed - mesquite pods and cactus. Evaluating the reference results, it was observed that the variation were similar to those reported in the literature. Comparing the preprocessing of samples, the performance ofthose developed with preprocessing (dried and ground) of the sample were more robust than those built with fresh samples. The NIRS Perten device performance similar to FOSS equipment, although the latter cover a larger spectral range and with lower readings intervals. NIR technology associate do multivariate techniques is reliable to predict the bromatological composition of mesquite pods and cactus.
Resumo:
2016