2 resultados para Calcination after 4 h at 550°C (Dean 1974)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phycoremediation of swine wastewaters has been widely reported as an attractive tertiary treatment system, that effectively removes the excessive nutrient loadswhilst offering a valuable source of feedstock biomass. Digestate from an upflow anaerobic sludge blanket (UASB, 6%v/v) and a nitrification reactor (NR; 50% v/v) were used as culturing media to microalgae. Experiments were carried out in lab scale photobioreactors (PBRs) using a consortia of Chlorella and Scenedesmus. Ammonia (44 to 90%) and phosphorus (77%) were efficiently removed from both effluents tested after 4 days. Microalgae biomass harvested from the UASB effluent showed 57, 34 and 1% of proteins, carbohydrates and lipids, respectively. Comparatively, the cellular composition of microalgae grown on NR effluent had lower protein (43%) but higher carbohydrate (42%) contents. Negligible difference in lipid fraction was observed independently of the effluents tested. The results suggest that the biomass harvested from phycoremediation of swine wastewaters can offer a valuable protein and carbohydrate feedstock for nutritional and biotechnological applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of Phakopsora pachyrhizi to cause infection under conditions of discontinuous wetness was investigated. In in vitro experiments, droplets of a uredospore suspension were deposited onto the surface of polystyrene. After an initial wetting period of either 1, 2 or 4 h, the drops were dried for different time intervals and then the wetness was restored for 11, 10 or 8 h. Germination and appressorium formation were evaluated. In in vivo experiments, soybean plants were inoculated with a uredospore suspension. Leaf wetness was interrupted for 1, 3 or 6 h after initial wetting periods of 1, 2 or 4 h. Then, the wetting was re-established for 11, 10 or 8 h, respectively. Rust severity was evaluated 14 days after inoculation. The germination of the spores and the formation of the appressoria on the soybean leaves after different periods of wetness were also quantified in vivo by scanning electron microscopy. P. pachyrhizi showed a high infective capacity during short periods of time. An interruption of wetness after 1 h caused average reductions in germination from 56 to 75% and in appressorium formation from 84 to 96%. Rust severity was lower in all of the in vivo treatments with discontinuous wetness when compared to the control plants. Rust severity was zero when the interruption of wetness occurred 4 h after the initial wetting. Wetting interruptions after 1 and 2 h reduced the average rust severity by 83 and 77%, respectively. The germination of the uredospores on the soybean leaves occurred after 2 h of wetness, with a maximum germination appearing after 4 h of wetness. Wetness interruption affected mainly the spores that had initiated the germination.