3 resultados para BIOSPHERE-ATMOSPHERE INTERACTIONS
Resumo:
Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation?atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.