5 resultados para Amazonian oils
Resumo:
2016
Resumo:
An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40 m), measured at 39.4 and 81.6 m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0° < |Z| < 20°. We conjecture that this improvement is due to the relationship between sunlight incidence and the ?activation?deactivation? of scalar sinks and sources vertically distributed in the forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0° < |Z| < 20°, and its values fall within the range reported in the literature for the unstable surface layer. In general, our results indicate the possibility of better stability-derived flux estimates for low zenith angle ranges.
Resumo:
Eucalyptus spp genus is economically important to different industry fields. There are pests that damage the development of eucalypts and Glycaspis brimblecombei, a sap-sucking insect, is one of them. Studies about this insect attack to the eucalypts showed preferences. This work aim was to compare the preferences of the insect with thermoanalytical characteristics of different eucalypts (susceptible, less susceptible and resistant to Glycaspis brimblecombei) essential oils. The leaves of six species of Eucalyptus were crushed and the essential oil was extracted using Clevenger apparatus. The Shimadzu DTG-60H was used to analyze the samples. The results showed that the samples from more susceptible eucalypts had total mass loss at about 124ºC to 156ºC, lower than samples from more resistant eucalypts (from 168ºC to 175ºC). Furthermore, the study suggests that the susceptibility or the resistance of eucalypts to the pest may be related to their essential oil composition and concentration of monoterpenes and sesquiterpenes.
Resumo:
Este estudo teve como objetivo estabelecer as variações na atividade fitotóxica dos extratos hexânico, acetato de etila e metanólico das raízes de Moutabea guianensis, e das substâncias cafeato de metila e escopoletina isoladas do extrato acetato de etila, variando a concentração e as espécies receptores. Foram desenvolvidos bioensaios de atividades fitotóxicas de germinação (a 25 °C e 12 horas de fotoperíodo) e de desenvolvimento da radícula e do hipocótilo (25 °C e 24 horas de fotoperíodo). A germinação das sementes de Mimosa pudica foi sensível aos extratos hexânico, acetato de etila e metanólico a 1% (w/v), com efeitos de inibição em 92%, 100% e 100%, respectivamente. A análise comparativa da atividade fitotóxica das substâncias testadas revelou que a escopoletina apresentou um potencial de inibição mais elevado no bioensaio de germinação de sementes frente a Mimosa pudica. Senna obtusifolia não foi sensível às substâncias testadas. Cafeato de metila apresentou maior potencial de inibição no bioensaio de desenvolvimento da radícula e hipocótilo, e a intensidade dos efeitos alelopáticos variou com as concentrações.
Resumo:
An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40?m), measured at 39.4 and 81.6?m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0°???|Z|???20°. We conjecture that this improvement is due to the relationship between sunlight incidence and the ?activation?deactivation? of scalar sinks and sources vertically distributed in the forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0°???|Z|???20°, and its values fall within the range reported in the literature for the unstable surface layer. In general, our results indicate the possibility of better stability-derived flux estimates for low zenith angle ranges.