5 resultados para Agricultural Science


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Research networks provide a framework for review, synthesis and systematic testing of theories by multiple scientists across international borders critical for addressing global-scale issues. In 2012, a GHG research network referred to as MAGGnet (Managing Agricultural Greenhouse Gases Network) was established within the Croplands Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA). With involvement from 46 alliance member countries, MAGGnet seeks to provide a platform for the inventory and analysis of agricultural GHG mitigation research throughout the world. To date, metadata from 315 experimental studies in 20 countries have been compiled using a standardized spreadsheet. Most studies were completed (74%) and conducted within a 1-3-year duration (68%). Soil carbon and nitrous oxide emissions were measured in over 80% of the studies. Among plant variables, grain yield was assessed across studies most frequently (56%), followed by stover (35%) and root (9%) biomass. MAGGnet has contributed to modeling efforts and has spurred other research groups in the GRA to collect experimental site metadata using an adapted spreadsheet. With continued growth and investment, MAGGnet will leverage limited-resource investments by any one country to produce an inclusive, globally shared meta-database focused on the science of GHG mitigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the large applicability of the field capacity (FC) concept in hydrology and engineering, it presents various ambiguities and inconsistencies due to a lack of methodological procedure standardization. Experimental field and laboratory protocols taken from the literature were used in this study to determine the value of FC for different depths in 29 soil profiles, totaling 209 soil samples. The volumetric water content (θ) values were also determined at three suction values (6 kPa, 10 kPa, 33 kPa), along with bulk density (BD), texture (T) and organic matter content (OM). The protocols were devised based on the water processes involved in the FC concept aiming at minimizing hydraulic inconsistencies and procedural difficulty while maintaining the practical meaning of the concept. A high correlation between FC and θ(6 kPa) allowed the development of a pedotransfer function (Equation 3) quadratic for θ(6 kPa), resulting in an accurate and nearly bias-free calculation of FC for the four database geographic areas, with a global root mean squared residue (RMSR) of 0.026 m3·m-3. At the individual soil profile scale, the maximum RMSR was only 0.040 m3·m-3. The BD, T and OM data were generally of a low predicting quality regarding FC when not accompanied by the moisture variables. As all the FC values were obtained by the same experimental protocol and as the predicting quality of Equation 3 was clearly better than that of the classical method, which considers FC equal to θ(6), θ(10) or θ(33), we recommend using Equation 3 rather than the classical method, as well as the protocol presented here, to determine in-situ FC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract: The objective of this study was to evaluate the effect of seasons under a tropical climate on forage quality, aswell the effect of an Urochloa brizantha cv. Marandu grazing system on enteric methane (CH4) emissions fromNellore cattle in the Southeast region of Brazil. Sixteen Nellore steers (18 months old and initial weight 318.0 ± 116.59 kg of LW; final weight 469 ± 98.50 kg of LW) were used for a trial period of 10 months, with four collection periods in winter (August), spring (December), summer (February) and autumn (May). Each collection period consisted of 28 days, corresponding to the representative month of each season where the last six days were designed for methane data collection. Animals were randomly distributed within 16 experimental plots, distributed in four random blocks over four trial periods. CH4 emissions were determined using the sulphur hexafluoride (SF6) tracer gas technique measured by gas chromatography and fluxes of CH4 calculated. The forage quality was characterized by higher CP and IVDMD and lower lignin contents in spring, differing specially from winter forage. Average CH4 emissions were between 102.49 and 220.91 g d-1 (37.4 to 80.6 kg ani-1 yr-1); 16.89 and 30.20 g kg-1 DMI; 1.35 and 2.90 Mcal ani-1 d-1; 0.18 and 0.57 g kg-1 ADG-1 and 5.05 and 8.76% of GE. Emissions in terms of CO2 equivalents were between 4.68 and 14.22 g CO2-eq-1 g-1 ADG. Variations in CH4 emissions were related to seasonal effect on the forage quality and variations in dry matter intake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Internal browning is an important disorder in pear fruit which can lead to economic losses. Pears (Pyrus communis L. cv. Bartlett) were harvested at early harvest maturity of 90 N from a commercial orchard in southern Brazil. Methyl jasmonate, ethanol, and 1-methylcyclopropene vapor treatments were carried out for 24 hours in order to mitigate the internal browning disorder. Fruit were stored for up to 150 days at 0 ± 1 °C and 90 ± 5 % RH. Pears exhibited internal browning in 37 % of the control samples after 90 days of cold storage. However, no internal browning symptoms were observed in the 1-MCP treatment. The first symptoms in 1-MCP samples were noticed after 120 days of cold storage (12 %) and reached 100 % in five days at room temperature. 1-MCP-treated pears showed flesh firmness values of 82 N after 90 days of cold storage and 18.7 N when they were removed from the cold storage and kept at 20 °C. The greatest acceptance index was attributed to 1- MCP pears after 90 days at 0 ± 1 °C followed by 5 days at 20 ± 1 °C (89.35). High acceptance indexes were attributed to MeJa (77.95) and control pears (76.40) after 30 days in cold storage followed by 5 days at room temperature. 1-MCP (0.3 µL L-1 , 24 hours at 0 ± 1 °C) treatment delays ripening and mitigates the internal browning in early harvested ?Bartlett? pears, that can be stored for up to 90 days at 0 ± 1 °C.