3 resultados para Activity concentration correction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sewage sludge applied to soils as a fertilizer often contains metals and linear alkylbenzene sulphonate (LAS) as contaminants. These pollutants can be transported to the aquatic environment where they can alter the phosphatase activity in living organisms. The acid phosphatase of algae plays important roles in metabolism such as decomposing organic phosphate into free phosphate and autophagic digestive processes. The order of in vitro inhi- bition of Pseudokirchneriella subcapitata acid phosphatase at the highest concentration tested was LAS[Hg2? = Al 3?[Se4? = Pb2?[Cd2?. A non-competitive inhibi- tion mechanism was obtained for Hg2? (Ki = 0.040 mM) and a competitive inhibition for LAS (Ki = 0.007 mM). In vivo studies with treated algae cultures showed that the inhibition of specific activity was observed in algae exposed during 7 days, in contrast to short term (24 h) treatments with both these chemicals. Our results suggest that the inhibition parameters in vitro did not markedly differ between the two chemicals. On the other hand, in vivo evaluations showed strong differences between both pollu- tants regarding the concentration values and the degree of response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments consisted of two rates of organic fertilizer (0 and 30 m3 ha-1) and five N rates (0, 10, 20, 40, and 80 kg ha-1), in a randomized block design arranged in split plots, with five replications. The organic fertilizer levels represented the main plots and the N levels, the subplots. The source of N was urea and the source of organic fertilizer was goat manure. Irrigation was applied through a drip system and N by fertigation. At the end of the third growing season, soil chemical properties were determined and nitrate concentration in the soil solution (extracted by porous cups) was determined. Organic fertilization increased organic matter, pH, EC, P, K, Ca, Mg, Mn, sum of bases, base saturation, and CEC, but decreased exchangeable Cu concentration in the soil by complexation of Cu in the organic matter. Organic fertilization raised the nitrate concentration in the 0.20-0.40 m soil layer, making it leachable. Nitrate concentration in the soil increased as N rates increased, up to more than 300 mg kg-1 in soil and nearly 800 mg L-1 in the soil solution, becoming prone to leaching losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resumo: Predição da concentração de baixo risco de diflubenzuron para organismos aquáticos e avaliação da argila e brita na redução da toxicidade. O diflubenzuron é um inseticida que além de ser usado agricultura, tem sido amplamente empregado na piscicultura, apesar do seu uso ser proibido nesta atividade. Este composto não consta na lista da legislação brasileira que estabelece limites máximos permissíveis em corpos de água para a proteção das comunidades aquáticas. No presente trabalho, a partir da toxicidade do diflubenzuron em organismos não-alvo, foi calculada a concentração de risco para somente 5% das espécies (HC5). O valor deste parâmetro foi estimado em aproximadamente 7 x 10-6 mg L-1 . Este baixo valor é devido à extremamente alta toxicidade do diflubenzuron para dafnídeos e à grande variação de sensibilidade entre as espécies testadas. Dois matérias de relativamente baixo custo se mostraram eficientes na remoção da toxicidade do diflubenzuron de soluções contendo este composto. Dentre esses materiais, a argila expandida promoveu a redução em aproximadamente 50% da toxicidade de uma solução contendo diflubenzuron. Os resultados podem contribuir para políticas públicas no Brasil relacionadas ao estabelecimento de limites máximos permissíveis de xenobióticos no compartimento aquático. Também, para a pesquisa de matérias inertes e de baixo custo com potencial de remoção de xenobióticos presentes em efluentes da aquicultura ou da agricultura. Abstract: Diflubenzuron is an insecticide that, besides being used in the agriculture, has been widely used in fish farming. However, its use is prohibited in this activity. Diflubenzuron is not in the list of Brazilian legislation establishing maximum permissible limits in water bodies for the protection of aquatic communities. In this paper, according toxicity data of diflubenzuron in non-target organisms, it was calculated an hazardous concentration for only 5% of the species (HC5) of the aquatic community. This parameter value was estimated to be about 7 x 10 -6 mg L -1 . The low value is due to the extreme high toxicity of diflubenzuron to daphnids and to the large variation in sensitivity among the species tested. Two relatively low cost and inert materials were efficient in removing the diflubenzuron from solutions containing this compound. Among these materials, expanded clay shown to promote reduction of approximately 50% of the toxicity of a solution containing diflubenzuron. The results may contribute to the establishment of public policies in Brazil associated to the definition of maximum permissible limits of xenobiotics in the aquatic compartment. This study is also relevant to the search of low cost and inert materials for xenobiotics removal from aquaculture or agricultural effluents.