2 resultados para Acculturation--Tanzania
Resumo:
ABSTRACT: Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH 4) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF 6), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH 4 and SF 6 levels were measured with gas chromatography. Differences in CH4 emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3g day?1) than the Crossbred (264.2 g day?1). Lactating cows produced more methane (353.8 g day?1) than dry cows (268.8 g day?1) and heifers (222.6 g day?1). Holstein, with greater milk production potential, produced less CH4 (p < 0.05) per unit of dry matter intake (19.1 g kg?1) than the Crossbred (22.0 g kg?1). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day?1, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day?1). Methane emission varied as function of animal category and management intensity of production system.
Resumo:
The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.