9 resultados para tropical deciduous forest

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poincianella pyramidalis (Fabaceae), Schinopsis brasiliensis (Anacardiaceae) and Sideroxylon obtusifolium (Sapotaceae) are native species of the Caatinga vegetation from Northeastern Brazil and have both biological importance and potential economic uses. Little is known about the water uptake and degradation of storage proteins during seed germination of these species. The aim of this study was to evaluate the imbibition and quantify the amount of storage proteins during seed germination of P. pyramidalis, S. brasiliensis and S. obtusifolium. Two lots of S. obtusifolium seeds with different vigour were used. Four replicates of 20 seeds of P. pyramidalis, S. brasiliensis and S. obtusifolium, were sown onto gerboxes with blotting paper soaked in distilled water and incubated during 72, 200 and 624 hours. Before and after imbibition seeds were weighed and frozen at until the sequential extraction and analysis of the seed storage proteins. Based on our results, we conclude that seed germination of P. pyramidalis, S. brasiliensis and S. obtusifolium has a well-defined triphasic imbibition. All storage proteins content of P. pyramidalis and S. brasiliensis seeds degraded along with the seed imbibition. Likewise, the content of albumins, globulins and glutelins decreased as S. obtusifolium seeds absorbed water

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART) model to simulate leaf absorption of photosynthetically active radiation (lAPAR) for an Amazon forest. The 3-D model scene was developed from airborne lidar data, and local measurements of leaf reflectance, aerosols, and PAR were used to model lAPAR under direct and diffuse illumination conditions. Simulated lAPAR under clear-sky and cloudy conditions was corrected for light saturation effects to estimate light utilization, the fraction of lAPAR available for photosynthesis. Although the fraction of incoming PAR absorbed by leaves was consistent throughout the year (0.80?0.82), light utilization varied seasonally (0.67?0.74), with minimum values during the Amazon dry season. Shadowing and light saturation effects moderated potential gains in forest productivity from increasing PAR during dry-season months when the diffuse fraction from clouds and aerosols was low. Comparisons between DART and other models highlighted the role of 3-D forest structure to account for seasonal changes in light utilization. Our findings highlight how directional illumination and forest 3-D structure combine to influence diurnal and seasonal variability in light utilization, independent of further changes in leaf area, leaf age, or environmental controls on canopy photosynthesis. Changing illumination geometry constitutes an alternative biophysical explanation for observed seasonality in Amazon forest productivity without changes in canopy phenology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. Results: The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. Conclusions: We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper describes a forest management system to be applied on smallholder farms, particularly on settlement projects in the Brazilian Amazon. The proposed forest management system was designed to generate a new source of family income and to maintain forest structure and biodiversity. The system is new in three main characteristics: the use of short cycles in the management of tropical forests, the low harvesting intensity and environmental impact, and the direct involvement of the local population in ali forest management activities. It is based on a minimum felling cycle of ten years and an annual timber harvest of 5-10 m3 ha-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40 m), measured at 39.4 and 81.6 m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0°  <  |Z|  <  20°. We conjecture that this improvement is due to the relationship between sunlight incidence and the ?activation?deactivation? of scalar sinks and sources vertically distributed in the forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0°  <  |Z|  <  20°, and its values fall within the range reported in the literature for the unstable surface layer. In general, our results indicate the possibility of better stability-derived flux estimates for low zenith angle ranges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vcmax is the rate of maximum velocity of carboxylation of plants and is considered one of the most critical parameters for changes in vegetation in face of global changes and it has a direct impact on gross primary productivity. Physiological processes are considered the main sources of uncertainties in dynamic global vegetation models (DGVMs). The Caatinga biome, in the semiarid region of northeastern Brazil, is extremely important due to its biodiversity and endemism. In a field work realized in an area of preserved Caatinga forest, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of a native species. These results of Vcmax measurements in Caatinga were compared with parameterization of models, revealing that Vcmax is not well adjusted in several DGVMs. Also, the values obtained in the Caatinga field experiments were very close to empirical values obtained in the Northern hemisphere (Austria). These ecophysiological measurements can contribute in understanding of this biome

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40?m), measured at 39.4 and 81.6?m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0°??forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0°??

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to investigate the impact of vegetation burning on the content and chemical composition of soil organic matter (SOM) along a profile of a sandy Acrisol in Southwestern Amazon, Brazil, within 3 years after experiment beginning(YAB).The study was performed in Rio Branco, Acre State, and the forest burning was performed under controlled conditions. Samples from 6 depth(0-100cm depth)were collected under burned forest (BF) and primary forest (PF) at 1 YAB and 3 YAB. Besides Cand N contents, humic substances and biomarkers were determined. Under PF, the C content decreased with depth from 12 to 2 g kg-1.C/N ratio ranged from 7.6 at the surface to values around 3 at 1 m depth, indicating a predominance of microbial products. Humin fraction was not detected in the whole profile. Burning of vegetation promoted an increase of C and of humic acids only at 0-5 cm. The n-alkane distribution showed a shift towards smaller chains in the 0-5 cm of BF, indicating main contribution of microbial products. Also PAH?s of high molecular weight were detected in this site. Vegetation burning imparts alterations on the SOM composition, but these tend to disappear within 3 years.