11 resultados para soil quality

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2012

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sugarcane in Brazil is passing through a management transition that is leading to the abolition of pre-harvest burning. Without burning, large amounts of sugarcane trash is generated, and there is a discussion regarding the utilization of this biomass in the industry versus keeping it in the field to improve soil quality. To study the effects of the trash removal on soil quality, we established an experimental sugarcane plantation with different levels of trash over the soil (0%, 50% and 100% of the original trash deposition) and analyzed the structure of the bacterial and fungal community as the bioindicators of impacts. The soil DNA was extracted, and the microbial community was screened by denaturing gradient gel electrophoresis in two different seasons. Our results suggest that there are no effects from the different levels of trash on the soil chemistry and soil bacterial community. However, the fungal community was significantly impacted, and after twelve months, the community presented different structures among the treatments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract:The aim of this study was to evaluate the effect of different nitrogen doses and five period of sample collection, on soil microbial biomass - nitrogen (SMB-N), total nitrogen (total N) and percentual ratio of the microbial biomass and total N (SMB-N/total N) in a Oxisol cultivated with barley (Hordeum vulgare L.). The experiment was installed in June, 2005, in an area located at Embrapa Cerrados, Federal District. The experimental design was a randomized block, with three replicates. The plots received doses of nitrogen: 20 - 40 - 80 kg ha-1 N and a control without it and the subplots were period of soil sample. Three applications of N were realized: 10 kg ha-1 on the 5th day (06/14) after sowing; the rest of N was parceled in two applications with fertigation, on tillage, on the 27th (07/08) DAP, e no 43rd (07/22) DAP. Soil samples layer (0 - 10 cm deep) were collected for (SMB-N) determination and total N in six periods: 02 days before of the first fertigation; 02 days after of the first fertigation; 04 days before of the last fertigation and 04 days after of the last fertigation; on flowering stage and after harvesting. There was effect of the doses of N and the period of soil collection on the SMB-N, total N and in the ratio SMB-N/total N. The average values of total N revealed steadier in short-term (cycle of the culture) and this was not a good parameter to evaluate the behavior and N transformations in the soil-plant system. Resumen: El objetivo de este estudio fue evaluar el efecto de diferentes dosis de nitrógeno y cinco período de muestreo en la biomasa microbiana del complejo suelo - nitrogeno (BMS-N), nitrógeno total (N total) y la relación porcentual de la biomasa microbiana y N total (BMS-N/N total) en un Oxisol cultivado con cebada (Hordeum vulgare L.). El estudio se inició en junio de 2005 en la estación experimental de la Empresa de Pesquisa Agropecuaria (Embrapa-Cerrados), Distrito Federal, Brazil. El experimento se dispuso en bloques al azar con tres repeticiones. Las parcelas recibieron dosis de nitrógeno: 20 - 40 - 80 kg/ha de N más un control sin N, y las subparcelas fueron el periodo de muestro. Las aplicaciones de N se realizaron de la forma siguiente: cinco días después de la siembra (dds) se aplicaron 10 kg/ha y el resto de la dosis se aplicó con fertirrigación en dos dosis 27 y 43 dds. Las muestras de suelo (0-10 cm de profundidad) para determinar BMS-N y N total fueron tomadas, 2 días antes e igual número de días después de la primera fertirrigación y 4 días antes y después de la última, en floración y después de la cosecha. No se encontró efecto de las dosis de N y el período de muestreo en el BMS-N, N total y en la relación BMS-N/N total. Los valores medios de N total fueron más estable en el corto plazo (ciclo de la cultivo) lo que indica que éste no es un buen parámetro para evaluar la dinámica del N y sus transformaciones en el sistema suelo-planta.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ABSTRACT: The study of labile carbon fractions (LCF) provides an understanding of the behavior of soil organic matter (SOM) under different soil management systems and cover crops. The aim of this study was to assess the effect of different soil management systems with respect to tillage, cover crop and phosphate fertilization on the amount of the LCF of SOM. Treatments consisted of conventional tillage (CT) and no-tillage (NT) with millet as the cover crop and a no-tillage system with velvet bean at two phosphorus dosages. Soil samples were collected and analyzed for organic carbon (OC), C oxidizable by KMnO4 (C-KMnO4), particulate OC (POC), microbial biomass carbon and light SOM in the 0.0-0.05, 0.05-0.10 and 0.10-0.20 m soil layers. The Carbon Management Index (CMI) was calculated to evaluate the impacts of soil management treatments on the quality of the SOM. The different LCFs are sensitive to different soil management systems, and there are significant correlations between them. C-KMnO4 is considered the best indicator of OC carbon lability. In the soil surface layers, the CT reduced the carbon content in all of the labile fractions of the SOM. The use of phosphorus led to the accumulation of OC and carbon in the different soil fractions regardless of the tillage system or cover crop. The application of phosphate fertilizer improved the ability of the NTsystem to promote soil quality, as assessed by the CMI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sustainability assessments were carried out in small-holders? farms in four territories where productive arrangements have been organized for production of minor oleagi- nous crops under the Brazilian biodiesel program. The study aimed at checking local impacts of the biodiesel productive chains at the rural establishment scale, and pro- moting the environmental performance of the selected farms, henceforth proposed as sustainable management demonstration units. Assessments were carried out with the APOIA-NovoRural system, which integrates 62 objective and quantitative indicators re- lated to five sustainability dimensions: i) Landscape Ecology, ii) Environmental Quality (Atmosphere, Water and Soil), iii) Socio-cultural Values, iv) Economic Values and v) Management and Administration. The main results point out that, in general, the eco- logical dimensions of sustainability, that is, the Landscape Ecology and Atmosphere, Water, and Soil quality indicators, show adequate field conditions, seemingly not yet negatively affected by increases in chemical inputs and natural resources use predicted as important potential impacts of the agro-energy sector. The Economic Values indica- tors have been favorably influenced in the studied farms, due to a steadier demand and improved prices for the oleaginous crops. On the other hand, valuable positive conse- quences expected for favoring farmers? market insertion, such as improved Socio-cultural Values and Management & Administration indicators, are still opportunities to be ma-terialized. The Environmental Management Reports issued to the farmers, based on the presented sustainability assessment procedures, offer valuable documentation and com-munication means for consolidating the organizational influence of the local productive arrangements studied. These productive arrangements were shown to be determinant for the selection of crop associations and diversification, as well as for the provision of technical assistance and the stabilization of demand - conditions that promote value aggregation and income improvements, favoring small-holders? insertion in the market. More importantly, these locally organized productive arrangements have been shown to strongly influence the valorization of natural resources and environmental assets, which are fundamental if sustainable rural development is to take place under the emerging agro-energy scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to assess the organic matter changes in quantity and quality, particularly of the humic fraction in the surface layer (0?20 cm), of a Typic Plinthustalf soil under different management of plant mixtures used as green manure for mango (Mangifera indica L.) crops. The plant mixtures, which were seeded between rows of mango trees, were formed by two groups of leguminous and non -leguminous plants. Prior to sowing, seeds were combined in different proportions and compositions constituting the following treatments: 100% non-leguminous species (NL); 100% leguminous species (L); 75% L and 25% NL; 50% L and 50% NL; 25% L and 75% NL; and 100% spontaneous vegetation, considered a control. The plant mixtures that grew between rows of mango trees caused changes in the chemical composition of the soil organic matter, especially for the treatments 50% L and 50% NL and 25% L and 75% NL, which increased the content of humic substances in the soil organic matter. However, the treatment 25% L and 75% NL was best at minimising loss of total organic carbon from the soil. The humic acids studied have mostly aliphatic characteristics, showing large amounts of carboxylic and nitrogen groups and indicating that most of the organic carbon was formed by humic substances, with fulvic acid dominating among the alkali soluble fractions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Inadequate soil use and management practices promote commonly negative impacts on the soil constituents and their properties, with consequences to ecosystems. As the soil mineralogy can be permanently altered due to soil use, this approach can be used as a tool to monitor the anthropogenic pressure. The objective of the present study was to assess the mineralogical alterations of a Brazilian regosol used for grape production for 40 years in comparison with a soil under natural vegetation (forest), aiming to discuss anthropogenic pressure on soils. Material and methods Soil samples were collected at depths of 0?0.20 and 0.20?0.40 m from vineyard production and natural vegetation sites. Physical and chemical parameters were analysed by classic approaches. Mineralogical analyses were carried out on <2 mm, silt and clay fractions. Clay minerals were estimated by the relative percentage of peak surface area of the X-ray patterns. Results and discussion Grape production reduced the organic matter content by 28% and the clay content by 23% resulting in a decreasing cation exchange capacity. A similar clay fraction was observed in both soils, containing kaolinite, illite/mica and vermiculite with hydroxy-Al polymers interlayered. Neither gibbsite nor chlorite was found. However, in the soil under native vegetation, the proportion of illite (79 %) was higher than vermiculite (21 %). Whereas, in the soil used for grape production during 40 years, the formation of vermiculite was promoted. Conclusions Grape production alters the proportions of soil constituents of the regosol, reducing clay fraction and organic matter contents, as well as promoting changes in the soil clay minerals with the formation of vermiculite to the detriment of illite, which suggests weathering acceleration and susceptibility to anthropogenic pressure. Recommendations and perspectives Ecosystems in tropical and subtropical climates can be more easily and permanently altered due to anthropogenic pressure, mainly as a consequence of a great magnitude of phenomena such as temperature amplitude and rainfall that occurs in these regions. This is more worrying when soils are located on steep grades with a high anthropogenic pressure, like regosols in Southern Brazil. Thus, this study suggests that changes in soil mineralogy can be used as an important tool to assess anthropogenic pressure in ecosystems and that soil quality maintenance should be a priority in sensible landscapes to maintain the ecosystem quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landfill leachates carry nutrients, especially N and K, which can be recycled in cropping systems. We applied doses of landfill leachate (0 [Control], 32.7, 65.4, 98.1, and 130.8 m3 ha-1 ) three times in 2008 and three times in 2009 on a clay Rhodic Kandiudult soil. In 2009, black oat (Avena strigosa L.) and corn (Zea mays L.) were cropped in succession and assessed for concentration of nutrients in leaves and for shoot biomass and grain yield, respectively. As a positive control, an additional treatment with urea (120 kg ha-1 of N) was studied in corn. Soil was sampled at four depths (down to 60 cm) in three sampling dates to assess chemical and biochemical properties. Concentration of nutrients in leaves, oat biomass (8530?23,240 kg ha-1), and corn grain yield (4703-8807 kg ha-1 ) increased with increasing doses of leachate. There was a transient increase in the concentration of nitrate in soil (3-30 mg kg-1), increasing the risk of N losses by leaching at doses above 120 kg ha-1 N, as revealed by an estimated N balance in the cropping system. Sodium and K in soil also increased with increasing doses of leachate but decreased as rainfall occurred. The activity of dehydrogenase decreased about 30% from the control to the highest dose of leachate and urea, suggesting an inhibitory effect of mineral N on microbial metabolism. Landfill leachate was promising as a source of N and K for crop productivity and caused minor or transient effects on soil properties.