3 resultados para saturated hydraulic conductivity

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the spatial variability of saturated hydraulic conductivity in the soil in an area of 51,850 ha at the headwaters of the Araguaia River MT/GO. This area is highly vulnerable because it is a location of recharging through natural water infiltration of the Guarani Aquifer System and an area of intense increases in agriculture since its adoption by growers in the last 30 years. Soil samples were collected at 383 points, geographically located by GPS. The samples were collected from depths of 0 - 20 cm and 60 - 80 cm. Exploratory statistics and box-plot were used in the descriptive analysis and semivariogram were constructed to determine the spatial model. The exploratory analysis showed that the mean hydraulic conductivity in the superficial layer was less than at the level of 60-80 cm; however, the greatest variability evaluated with a coefficient of variation also was from this layer. Data tended towards a normal distribution. These results can be explained by the greater soil compaction in the superficial layer. The semivariogram models, adjusted for the two layers, were exponential and demonstrated moderate and strong dependence, with ranges of 5000 and 3000 utm respectively. It was concluded that soil use is influencing the spatial distribution model of the hydraulic conductivity in the region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coffea sp. is cultivated in large areas, using both conventional and organic management. However, information about the sustainability of these two management systems is still deficient. The objective of the present study was to evaluate the physical properties of soil cultivated with Conilon coffee (C. canephora) under organic and conventional management. Two areas cultivated with Conilon coffee (under organic and conventional management) and a fragment of Atlantic forest, used as a reference, were selected for the experiment. Soil granulometry, hydraulic conductivity, water retention curve, resistance to penetration, porosity, optimal hydric interval, and other physical characteristics were measured at depths of 0 to 10 and 10 to 20 cm. The data was submitted to multivariate and descriptive statistical analyses. Higher similarity was observed between the soil cultivated with Conilon coffee under organic management and the Atlantic forest soil. Soil resistance to penetration at 10, 30, 100, 500 and 1500 kPa, macro porosity, density and total porosity were the main physical properties that differentiated both management systems studied. The non-use of agricultural machinery and the addition of organic matter may be the main reasons for higher soil sustainability observed under organic management when compared with the conventional system.