6 resultados para phenophase response to climate change

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earth climate has changed significantly in the last century and the different models indicate that it will continue to change over the next decades, even if the emission of greenhouse gases stop immediately. These changes have impact on different plant populations, as well as in the actual distribution of several species. As plants, in general, have a smaller capacity of dispersion compared with the animals it is likely that they will suffer the impacts of the climate change more intensively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change.