5 resultados para nitrogen concentration
em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)
Resumo:
The fertilizing management for apple tree is essential, especially for nitrogen, one of the most important nutrients affecting fruit yield. Thus, an experiment was conducted in 2012 and 2013 to evaluate the fruit production, yield and leaf chlorophyll of ?Princesa? and ?Eva? apples as a function of nitrogen fertigation under Brazilian semiarid conditions. The experimental design consisted of randomised blocks, with treatments distributed in a factorial arrangement 2 x 4, corresponding to apple cultivars (Eva and Princesa); and nitrogen doses (160, 120, 80 and 40 kg of N ha-1), with four replications and three plants. Calcium nitrate was used as nitrogen source (15.5% of N) with applications twice a week during 40 days, reaching 12 fertilizing performances through irrigation water. The following variables were evaluated: i) fruit production per plant (kg plant-1); ii) fruit yield (t ha-1); iii) number of fruits per plant; iv) leaf chlorophyll meter readings (index); and v) leaf nitrogen concentration (g kg-1). Princesa apple cultivar if compared to ?Eva? presents a better fruit production performance under Brazilian semiarid. Furthermore, nitrogen doses fertilized through irrigation water have no effect on fruit production of Eva and Princesa apple cultivars during the first production cycle.
Resumo:
Abstract: The objectives of this study were to evaluate the combined effects of soil bioticand abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two typesofsewagesludge intosoil ina 5-years field assay under tropical conditions and topredict the effectsof these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. Amultiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil.
Resumo:
Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments consisted of two rates of organic fertilizer (0 and 30 m3 ha-1) and five N rates (0, 10, 20, 40, and 80 kg ha-1), in a randomized block design arranged in split plots, with five replications. The organic fertilizer levels represented the main plots and the N levels, the subplots. The source of N was urea and the source of organic fertilizer was goat manure. Irrigation was applied through a drip system and N by fertigation. At the end of the third growing season, soil chemical properties were determined and nitrate concentration in the soil solution (extracted by porous cups) was determined. Organic fertilization increased organic matter, pH, EC, P, K, Ca, Mg, Mn, sum of bases, base saturation, and CEC, but decreased exchangeable Cu concentration in the soil by complexation of Cu in the organic matter. Organic fertilization raised the nitrate concentration in the 0.20-0.40 m soil layer, making it leachable. Nitrate concentration in the soil increased as N rates increased, up to more than 300 mg kg-1 in soil and nearly 800 mg L-1 in the soil solution, becoming prone to leaching losses.
Resumo:
There are few studies on the interaction between soybean plant density and nitrogen fertilization. This research aimed to assess the effect of mineral nitrogen associated to different plant densities on yield, yield components and oil and protein concentrations of soybean grains. Two experiments were conducted in the 2013/2014 and 2014/2015 growing seasons, with randomized complete block design, in a split plots scheme, with six replications. Four sowing densities (150, 300, 440 and 560 thousand viable seeds; ha-1) were allocated in the plots, and two nitrogen levels (0 and 45 kg N; ha-1, applied at V2, using ammonium sulfate) were allocated in the subplots. There was no interaction between soybean plant density and the application of mineral nitrogen on yield, yield components and oil and protein concentrations in soybean grains. Higher plant population reduced the number of pods per plant and the contribution of branch sinks to the grain yield, but the effects on yield differed among the growing seasons. The mineral nitrogen fertilization did not increase yield and protein and oil concentrations in the grains, thus it was unnecessary.
Resumo:
In the semiarid region of Brazil the use of irrigation systems for applying fertilizers in horticulture is the primary means for incorporating nutrients in the soil. However, this technique still requires its use in wine vines to be assessed. In view of this, this study aimed to assess nitrate and potassium concentrations in soil fertigated with nitrogen and potassium fertilizers in 3 wine grape growing cycles. A field experiment was conducted with ?Syrah? wine grapes, in Petrolina, Pernambuco, Brazil; it assessed five nitrogen doses (0, 15, 30, 60 and 120 kg ha-1) and five K2O doses (0, 15, 30, 60 and 120 kg ha-1) applied by drip irrigation system with two emitters per plant, with a flow rate of 4 L h-1. The experimental design used was the factorial split-plot, making up 13 combinations arranged in 4 randomized blocks. Soil solution samples were collected weekly with the aid of porous cup extractors for all treatments and at depths of 0.4 and 0.6 m by determining nitrate and potassium concentrations and electrical conductivity. Increased levels of both nutrients in the irrigation water increased the availability of nitrate and potassium in the soil solution. The highest nitrate and potassium concentrations were found in the second growing cycle at both depths studied.