6 resultados para filamentous fungi

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the inhibitory activity of 7-hydroxycalamenene-rich essential oil nanoemulsion against filamentous fungi and yeasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The traditional system of collection and storage of Brazil nut compromises seriously the quality of these almonds as it contributes to the high incidence of contaminants, like fungi of the genus Aspergillus, which can produce aflatoxins. In this study, the objective was to evaluate the influence of the storage period in studied conditions, on the physicochemical characteristics and on the microbiological contamination of Brazil nuts. The experimental was designed as completely randomized, considering as treatments the storage period (0 - control, 30, 60, 90, 120 and 150 days) with four replicates of 3 kg of Brazil nuts each. The samples were submitted to physicochemical and microbiological analysis. It was observed that almonds submitted to the storage had their moisture content reduced by 78.2% at 150 days of storage, however, this reduction was not fast enough to avoid surface contamination by filamentous and potentially aflatoxins producing fungi. The critical period of contamination occurred on the first 30 days of storage when there was an increase of the studied fungi, as well as B1 and total aflatoxin. The studied storage conditions were four times more effective in reducing the product moisture content than the traditional methods, however, pre-drying is necessary to avoid contamination of the product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sugarcane in Brazil is passing through a management transition that is leading to the abolition of pre-harvest burning. Without burning, large amounts of sugarcane trash is generated, and there is a discussion regarding the utilization of this biomass in the industry versus keeping it in the field to improve soil quality. To study the effects of the trash removal on soil quality, we established an experimental sugarcane plantation with different levels of trash over the soil (0%, 50% and 100% of the original trash deposition) and analyzed the structure of the bacterial and fungal community as the bioindicators of impacts. The soil DNA was extracted, and the microbial community was screened by denaturing gradient gel electrophoresis in two different seasons. Our results suggest that there are no effects from the different levels of trash on the soil chemistry and soil bacterial community. However, the fungal community was significantly impacted, and after twelve months, the community presented different structures among the treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF), which is intrinsically present or may be introduced in soils by inoculation, is an example of natural and renewable resource to increase plant nutrient uptake. This kind of fungi produces structures (hyphae, arbuscles and sometimes vesicles) inside the plant root cortex. This mutualistic relationship promotes plant gains in terms of water and nutrient absorption (mainly phosphorus). Biochar can benefit plant interaction with AMF, however, it can contain potentially toxic compounds such as heavy metals and organic compounds (e.g. dioxins, furans and polycyclic aromatic hydrocarbons), depending on the feedstock and pyrolysis conditions, which may damage organisms. For these reasons, the present work will approach the impacts of biochar application on soil attributes, AMF-plant symbiosis and its responses in plant growth and phosphorus uptake. Eucalyptus biochar produced at high temperatures increases sorghum growth; symbiosis with AMF; and enhances spore germination. Enhanced plant growth in the presence of high temperature biochar and AMF is a response of root branching stimulated by an additive effect between biochar characteristics and root colonization. Biochar obtained at low temperature reduces AMF spore germination; however it does not affect plant growth and symbiosis in soil.