3 resultados para eco-physiological processes
em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)
Resumo:
Vcmax is the rate of maximum velocity of carboxylation of plants and is considered one of the most critical parameters for changes in vegetation in face of global changes and it has a direct impact on gross primary productivity. Physiological processes are considered the main sources of uncertainties in dynamic global vegetation models (DGVMs). The Caatinga biome, in the semiarid region of northeastern Brazil, is extremely important due to its biodiversity and endemism. In a field work realized in an area of preserved Caatinga forest, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of a native species. These results of Vcmax measurements in Caatinga were compared with parameterization of models, revealing that Vcmax is not well adjusted in several DGVMs. Also, the values obtained in the Caatinga field experiments were very close to empirical values obtained in the Northern hemisphere (Austria). These ecophysiological measurements can contribute in understanding of this biome
Resumo:
Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation?atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.
Resumo:
The purpose of this bibliography review was to approach the thermal comfort rates on milk production of goats from Alpine and Saanen breeds in Brazil. The caloric stress caused by weather changes to which the animals are submitted, influence on the mechanisms of normal physiological processes of the body. Thus, the effect on the lactation process in goats can be mentioned, where it decreases the amount of water in the body with the consequent decrease in synthesis and milk ejection interfering in the production of hormone prolactin and growth hormone. The animal?s interaction with the environment must be considered when the aim in livestock farming is welfare, because the different responses of the animal to the peculiarities of each region are crucial for the success of the animal adaptation. So, the correct identification of the factors that influence the productive life of the animal, such as the stress caused by the seasonal fluctuations of the environment, allow production systems management, making it possible to make them sustainable and viable. The maintenance of these parameters in normal levels is very important, to the point of being used in the evaluation of climate adaptability of breeds to a certain environmental condition. In this way, the concerns about animal welfare and environmental comfort are due to the climatic variables and the behavioral, physiological and productive responses are prevailing when implementing the suitability of certain production systems.