8 resultados para climate-change impacts

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: Climate change has a potential to impact rainfall, temperature and air humidity, which have relation to plant evapotranspiration and crop water requirement. The purpose of this research is to assess climate change impacts on irrigation water demand, based on future scenarios derived from the PRECIS (Providing Regional Climates for Impacts Studies), using boundary conditions of the HadCM3 submitted to a dynamic downscaling nested to the Hadley Centre regional circulation model HadRM3P. Monthly time series for average temperature and rainfall were generated for 1961-90 (baseline) and the future (2040). The reference evapotranspiration was estimated using monthly average temperature. Projected climate change impact on irrigation water demand demonstrated to be a result of evapotranspiration and rainfall trend. Impacts were mapped over the target region by using geostatistical methods. An increase of the average crop water needs was estimated to be 18.7% and 22.2% higher for 2040 A2 and B2 scenarios, respectively. Objective ? To analyze the climate change impacts on irrigation water requirements, using downscaling techniques of a climate change model, at the river basin scale. Method: The study area was delimited between 4º39?30? and 5º40?00? South and 37º35?30? and 38º27?00? West. The crop pattern in the target area was characterized, regarding type of irrigated crops, respective areas and cropping schedules, as well as the area and type of irrigation systems adopted. The PRECIS (Providing Regional Climates for Impacts Studies) system (Jones et al., 2004) was used for generating climate predictions for the target area, using the boundary conditions of the Hadley Centre model HadCM3 (Johns et al., 2003). The considered time scale of interest for climate change impacts evaluation was the year of 2040, representing the period of 2025 to 2055. The output data from the climate model was interpolated, considering latitude/longitude, by applying ordinary kriging tools available at a Geographic Information System, in order to produce thematic maps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The starting point for this study was the consideration of future climate change scenarios and their uncertainties. The paper presents the global projections from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and compares them with regional scenarios (downscaling) developed by the Brazilian National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais - INPE), with a focus on two main IPCC scenarios (RCP4.5 and RCP8.5) and two main global models (MIROC and Hadley Centre) for the periods 2011-2040 and 2041-2070. It aims to identify the main trends in terms of changes in temperature and precipitation for the North and Northeast regions of Brazil (more specifically, in the Amazon, semi-arid and cerrado biomes).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earth climate has changed significantly in the last century and the different models indicate that it will continue to change over the next decades, even if the emission of greenhouse gases stop immediately. These changes have impact on different plant populations, as well as in the actual distribution of several species. As plants, in general, have a smaller capacity of dispersion compared with the animals it is likely that they will suffer the impacts of the climate change more intensively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use at microregion level from the Brazilian Census years 1975, 1985, 1995 and 2006 to assess the impact of climate change on Brazilian agriculture using a Ricardian model. We estimate the Ricardian model using repeated cross sections for each Census Year, a pooled model and a twostage model based on Hsiao 2003. Results show that a marginal increase of temperature is harmful for agriculture in all regions of Brazil, with the exception of the South. The most negative impacts are felt in the North and in the North-East. There is mixed evidence on the effect of a marginal impact of precipitation. Additional rainfall is beneficial in South, South-East and in the Center-West. It is harmful in other regions. Impact estimates with three GCM scenarios generated using the A2 SRES emission scenario show that climate change is expected to be generally harmful in 2060. In 2100 only the climate change scenario generated by the Hadley HADCM3 model predicts negative impacts; the MIMR model predicts that climate change will not significantly affect land values while the NCPCM model predicts significant beneficial effects using the Hsiao model and nonsignificant beneficial effects using the pooled model. Among Brazilian regions, only the South and some cases the South-East are expected to benefit from climate change.