3 resultados para Vegetation management - Victoria

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in soils management systems, including the application of green manure, are able to increase crop productivity. The aim of this study was to propose a soil management system with the use of green manure to improve the nutritional status and melon productivity in the submedian of the São Francisco Valley. The experiment was installed in Typic Plinthustalf and conducted in split plot. There were two soil tillage systems, tillage (T) and no tillage (NT), and three types of green manure (two vegetal cocktails: VC1- 75% legumes (L) + 25% non-legumes (NL); VC2- 25% L+ 75% NL and spontaneous vegetation (SV)). The experimental design was a randomised block with four replications. Fourteen species of legumes, grasses and oilseeds were used for the composition of the plant cocktails. We evaluated production of the dry shoot and root biomass and carbon and nutrient accumulation by green manures and melon plant. Data were subjected to analysis of variance and the treatment means were compared by Tukey´s test (P<0.05). Shoot biomass production and carbon and nutrient accumulation were higher in plant mixtures compared to spontaneous vegetation. The root system of the plant cocktails added larger quantities of biomass and nutrients to the soil to a depth of 0.60 m when compared to the spontaneous vegetation. The cultivation of plant cocktails with soil tillage, regardless of their composition, is a viable alternative for adding biomass and nutrients to the soil in melon crops in semi-arid conditions, providing productivity increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The super early genotypes (SEG) of dry bean (Phaseolus vulgaris L.) have a shorter life cycle (65-75 days) when compared with the season length of traditional cultivars (90-100 days). Timing of nitrogen top-dressing fertilization could be different because of this reduction in length of the SEG life cycle. This study aimed at characterizing, by using growth analysis and vegetation index, super early genotypes of dry bean development as affected by timing of nitrogen application. Field experiments were conducted in the 2014 and 2015 growing seasons in central Brazil with a randomized block experimental design with split plots scheme and four replicates. The plots comprised the dry bean genotypes (Colibri ? check cultivar, CNFC 15873, CNFC 15874, and CNFC 15875), and subplots comprised applications of N at different timings: 90 kg of N at sowing, 90 kg N at top-dressing; 45 kg of N at sowing plus 45 kg at top-dressing, with urea as the source of N. We also used a control treatment without N application. The CNFC 15874 super early genotype of dry bean had the higher grain yield (2776 kg ha-1) and differed from the CNFC 15873 genotype (2492 kg ha-1). Nitrogen fertilization allowed higher grain yield (2619 kg ha-1, when applied N at sowing, 2605 kg ha-1, when applied N at sowing and at top-dressing, and 2680 kg ha-1, when applied N at top-dressing) than the control, 2360 kg ha-1 (no N fertilization). The time of N fertilization in super early genotype of dry bean did not affect grain yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under land and climate change scenarios, agriculture has experienced water competitions among other sectors in the São Paulo state, Brazil. On the one hand, in several occasions, in the northeastern side of this state, nowadays sugar-cane is expanding, while coffee plantations are losing space. On the other hand, both crops have replaced the natural vegetation composed by Savannah and Atlantic Coastal Forest species. Under this dynamic situation, geosciences are valuable tools for evaluating the large-scale energy and mass exchanges between these diffe rent agro-ecosystems and the lower atmosphere. For quantification of the energy balance components in these mixed agro-ecosystems, the bands 1 and 2 from the MODIS product MOD13Q1 we re used throughout SA FER (Surface Algorithm for Evapotranspiration Retrieving) algorithm, which was applied together with a net of 12 automatic weather stations, during the year 2015 in the main sugar cane and coffee growing regions, located at the no rtheastern side of the state. The fraction of the global solar radiation (R G ) transformed into net radiation (Rn) was 52% for sugar cane and 53% for both, coffee and natural vegetation. The respective annual fractions of Rn used as λ E were 0.68, 0.87 and 0.77, while for the sensible heat (H) fluxes they were 0.27, 0.07 and 0.16. From April to July, heat advection raised λ E values above Rn promoting negative H, however these effects were much and less strong in coffee and sugar cane crop s, respectively. The smallest daily Rn fraction for all agro-ecosystems was for the soil heat flux (G), with averages of 5%, 6% and 7% in sugar cane, coffee and natural vegetation. From the energy balance analyses, we could conclude that, sugar-cane crop presented lower annual water consumption than that for coffee crop , what can be seen as an advantage in situations of water scarcity. However, the replacement of natural vegetation by su gar cane can contribute for warming th e environment, while when this occur with coffee crop there was noticed co oling conditions. The large scale modeling satisfactory results confirm the suitability of using MODIS products togeth er with weather stations to study the energy balance components in mixed agro-ecosystems under land-use and climate change conditions.