5 resultados para Regional climate models

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projected change in forage production under a range of climate scenarios is important for the evaluation of the impacts of global climate change on pasture-based livestock production systems in Brazil. We evaluated the effects of regional climate trends on Panicum maximum cv. Tanzânia production, predicted by agro-meteorological model considering the sum of degree days and corrected by a water availa bility index. Data from Brazilian weather stations (1963?2009) were considered as the current climate (baseline), and future scenarios, based on contrasting scenarios interms of increased temperature and atmospheric CO2 concentrations (high and low increases), were determined for 2013?2040 (2025 scenario) and for 2043?2070 (2055 scenario). Predicted baseline scenarios indicated that there are regional and seasonal variations in P. maximum production related to variation intemperature and water availability during the year. Production was lower in the Northeast region and higher in the rainforest area. Total annual productionunder future climate scenarios was predicted toincrease by up to 20% for most of the Brazilian area, mainly due to temperature increase, according to each climate model and scenario evaluated. The highest increase in forage production is expected to be in the South, Southeast and Central-west areas of Brazil. In these regions, future climate scenarios will not lead to changes in the seasonal production, with largerincreases in productivity during the summer. Climate risk is expected to decrease, as the probability of occurrence of low forage productions will be lower. Due to the predicted increase in temperature and decrease in rainfall in the Northeast area, P. maximum production is expected to decrease, mainly when considering scenarios based on the PRECIS model for the 2055 scenario.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation?atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract: The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices ? Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI). Based on latitude, longitude, altitude and distance from Atlantic Ocean, the 3 viticultural climatic indices were modeled and the algorithms applied to a DTM using GIS. The results show that Rio Grande do Sul has the following classes of viticultural climate: according to DI ? Moderately Dry, Sub-humid, Humid; according to HI ? Cool, Temperate, Temperate warm, Warm and Very Warm; according to CI ? Cool nights, Temperate nights, Warm nights. Based on the total surface, the most representatives viticultural climates are: « Humid x Temperate » (3,1%), « Humid x Temperate warm » (14,4%), « Humid x Warm » (52,6%), « Sub-humid x Warm » (20,0%) and « Sub-humid x Very warm » (5,8%). According to CI, the viticultural climates have a range of variation as a function of the interaction between « earlyness of the varieties x heliothermal availability ». Key words: climate classification, climate models, climatic Groups, zoning

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.