10 resultados para Embankment on reinforced soil

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: The use of cover crops has recently increased and represents an essential practice for the sustainability of no-tillage systems in the Cerrado region. However, there is little information on the effects of nitrogen fertilization and cover crop use on nitrogen soil fractions. This study assessed changes in the N forms in soil cropped to cover crops prior to corn growing. The experiment consisted of a randomized complete block design arranged in split-plots with three replications. Cover crops were tested in the plots, and the N topdressing fertilization was assessed in the subplots. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis, Canavalia brasiliensis M. ex Benth, Cajanus cajan (L.) Millsp, and Sorghum bicolor (L.) Moench. After corn harvesting, the soil was sampled at depths of 0.00-0.10 and 0.10-0.20 m. The cover crops showed different effects at different soil depths. The soil cultivated with U. ruziziensis showed higher contents of total-N and particulate-N than the soil cultivated with C. cajan. Particulate-N was the most sensitive to changes in the soil management among the fractions of N assessed. The soil under N topdressing showed a lower content of available-N in the 0.10-0.20 m layer, which may be caused by the season in which the sampling was conducted or the greater uptake of the available-N by corn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been some concern about the environmental impact of microbial agents. Pseudomonas may be used as bioremediator and as biopesticide. In this study, we report the use of soil enzyme assays as biological indicator of possible negative effects in soil functioning after the P. putida AF7 inoculation. For that, P. putida AF7 was originally isolated from the rizosphere of rice and was inoculated on three soil types: Rhodic Hapludox (RH), Typic Hapludox (TH); and Arenic Hapludult (AH). The acid phosphatase, b-glucosidase and protease enzymes activities were measured for three period of evaluation (7, 14 and 21 days). In general, the enzymatic activities pre- sented variation among the tested soils. The highest activities of b-glucosidase and acid phosphatase were observed in the RH and AH soils, while the protease activity was higher in the TH soil. Also, the soil charac- teristics were measured for each plot. The activity of enzymes from the carbon cycle was positively correlated with the N and the P and the enzyme from the nitrogen cycle was negatively correlated with N and C.org. The presented data indicate that soil biochemical properties can be an useful tool for use as an indicator of soil perturba- tions by microbial inoculation in a risk assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When the harvesting of sugarcane involves a mechanized process, plant residues remain on the soil surface, which makes proximal and remote sensing difficult to monitor. This study aimed to evaluate, under laboratory conditions, differences in the soil spectral behavior of surface layers Quartzipsamment and Hapludox soil classes due to increasing levels of sugarcane?s dry (DL) and green (GL) leaf cover on the soil. Soil cover was quantified by supervised classification of the digital images (photography) taken of the treatments. The spectral reflectance of the samples was obtained using the FieldSpec Pro (350 to 2500 nm). TM-Landsat bands were simulated and the Normalized Difference Vegetation Index (NDVI) and soil line were also determined. Soil cover ranged from 0 to 89 % for DL and 0 to 80 % for GL. Dry leaf covering affected the features of the following soil constituents: iron oxides (480, 530 and 900 nm) and kaolinite (2200 nm). Water absorption (1400 and 1900 nm) and chlorophyll (670 nm) were determinant in differentiating between bare soil and GL covering. Bands 3 and 4 and NDVI showed pronounced variations as regards differences in soil cover percentage for both DL and GL. The soil line allowed for discrimination of the bare soil from the covered soil (DL and GL). High resolution sensors from about 50 % of the DL or GL covering are expected to reveal differences in soil spectral behavior. Above this coverage percentage, soil assessment by remote sensing is impaired.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil acidity and low natural fertility are the main limiting factors for grain production in tropical regionssuch as the Brazilian Cerrado. The application of lime to the surface of no-till soil can improve plant nutrition, dry matter production, crop yields and revenue. The present study, conducted at the Lageado Experimental Farm in Botucatu, State of São Paulo, Brazil, is part of an ongoing research project initi-ated in 2002 to evaluate the long-term effects of the surface application of lime on the soil?s chemical attributes, nutrition and kernel/grain yield of peanut (Arachis hypogaea), white oat (Avena sativa L.) and maize (Zea mays L.) inter cropped with palisade grass (Urochloa brizantha cv. Marandu), as well as the forage dry matter yield of palisade grass in winter/spring, its crude protein concentration, estimated meat production, and revenue in a tropical region with a dry winter during four growing seasons. The experiment was designed in randomized blocks with four replications. The treatments consisted of four rates of lime application (0, 1000, 2000 and 4000 kg ha−1), performed in November 2004. The surface application of limestone to the studied tropical no-till soil was efficient in reducing soil acidity from the surface down to a depth of 0.60 m and resulted in greater availability of P and K at the soil surface. Ca and Mg availability in the soil also increased with the lime application rate, up to a depth of 0.60 m. Nutrient absorption was enhanced with liming, especially regarding the nutrient uptake of K, Ca and Mg by plants.Significant increases in the yield components and kernel/grain yields of peanut, white oat and maize were obtained through the surface application of limestone. The lime rates estimated to achieve the maximum grain yield, especially in white oat and maize, were very close to the rates necessary to increase the base saturation of a soil sample collected at a depth of 0?0.20 m to 70%, indicating that the surface liming of 2000 kg ha−1is effective for the studied tropical no-till soil. This lime rate also increases the forage dry matter yield, crude protein concentration and estimated meat production during winter/spring in the maize-palisade grass inter cropping, provides the highest total and mean net profit during the four growing seasons, and can improve the long-term sustainability of tropical agriculture in the Brazilian Cerrado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil carbon under Amazonian forests has an important roles in global changing, making information on the soil content and depths of these stocks are considerable interest in efforts to quantify soil carbon emissions to the atmosphere.This study quantified the content and soil organic carbon stock under primary forest up to 2 m depth, at different topographic positions, at Cuieiras Biological Reserve, Manaus/ ZF2, km 34, in the Central Amazon, evaluating the soil attributes that may influence the permanence of soil carbon. Soil samples were collected along a transect of 850 m on topographic gradient Oxisol (plateau), Ultisol (slope) and Spodosol (valley). The stocks of soil carbon were obtained by multiplying the carbon content, soil bulk density and trickiness of soil layers. The watershed was delimited by using STRM and IKONOS images and the carbon contend obtained in the transects was extrapolated as a way to evaluate the potential for carbon stocks in an area of 2678.68 ha. The total SOC was greater in Oxisol followed by Spodosol and Ultisol. It was found direct correlations between the SOC and soil physical attributes. Among the clay soils (Oxisol and Ultisol), the largest stocks of carbon were observed in Oxisol at both the transect (90 to 175.5 Mg C ha-1) as the level of watershed (100.2 to 195.2 Mg C ha-1). The carbon stocks under sandy soil (Spodosol) was greater to clay soils along the transect (160-241 Mg C ha-1) and near them in the Watershed (96.90 to 146.01 Mg C ha-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sugarcane in Brazil is passing through a management transition that is leading to the abolition of pre-harvest burning. Without burning, large amounts of sugarcane trash is generated, and there is a discussion regarding the utilization of this biomass in the industry versus keeping it in the field to improve soil quality. To study the effects of the trash removal on soil quality, we established an experimental sugarcane plantation with different levels of trash over the soil (0%, 50% and 100% of the original trash deposition) and analyzed the structure of the bacterial and fungal community as the bioindicators of impacts. The soil DNA was extracted, and the microbial community was screened by denaturing gradient gel electrophoresis in two different seasons. Our results suggest that there are no effects from the different levels of trash on the soil chemistry and soil bacterial community. However, the fungal community was significantly impacted, and after twelve months, the community presented different structures among the treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of cover crop straw and early application of total N at sowing may provide significant changes in the microbial population, reflecting on the N dynamics in the soil and in upland rice plants. This study aimed at determining the effect of the early application of nitrogen doses as mineral N and microbial biomass carbon in the soil, as well as in the activity of nitrate reductase, and grain yield of upland rice plants cultivated under notillage system (NTS). A randomized blocks design, in a split-plot scheme, with four replications, was used. The treatments consisted of N doses (0 kg ha-1, 40 kg ha-1, 80 kg ha-1 and 120 kg ha-1) and the presence or absence of U. brizantha cover straw. Maintaining the straw on the soil surface reduces the ammonium levels and increases the microbial biomass carbon content of the soil. The application of increasing doses of N in the soil provides increases in the levels of nitrate and ammonium in the soil up to 28 days after emergence. The activity of the nitrate reductase enzyme in the plants increases and the contents of ammonium and nitrate in the soil decrease with the crop development. The number of panicles and grain yield of upland rice increase with the increase of the nitrogen fertilization, but decrease in the presence of U. brizantha straw. Thus, it is recommend the use of early N fertilization in upland rice crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Organic residues from sugarcane crop and processing (vinasse, boiler ash, cake filter, and straw) are commonly applied or left on the soil to enhance its fertility. However, they can influence pesticide degradation and sorption. The objective of this study was to assess the effect of adding these organic residues on the degradation and sorption of fipronil and atrazine in two soils of the State of Mato Grosso do Sul, MS, Brazil. The degradation experiment was carried out with laboratory-incubated (40 days; 28°C; 70% field capacity) soils (0-10cm). The batch equilibration method was used to determine sorption. Fipronil (half-life values of 15-105 days) showed to be more persistent than atrazine (7-17 days). Vinasse application to the soil favored fipronil and atrazine degradation, whereas cake filter application decreased the degradation rates for both pesticides. Values for sorption coefficients (Kd) were determined for fipronil (5.1-13.2mL g-1) and atrazine (0.5-1.5mL g-1). Only straw and cake filter residues enhanced fipronil sorption when added to the soil, whereas all sugarcane residues increased atrazine sorption. RESUMO: Resíduos orgânicos do cultivo e processamento da cana-de-açúcar (vinhaça, cinzas, torta de filtro e palha) são usualmente aplicados ou deixados no solo para aumentar sua fertilidade, mas eles podem influenciar na degradação e sorção de agrotóxicos. O objetivo deste estudo foi avaliar o efeito da adição desses resíduos orgânicos no solo sobre a degradação e sorção do fipronil e da atrazina em dois solos no Estado de Mato Grosso do Sul, MS, Brasil. O experimento de degradação foi realizado com solos (0-10cm) incubados em laboratório (40 dias; 28°C; 70% da capacidade de campo). Para determinar a sorção, foi usado o método da batelada. Fipronil mostrou ser mais persistente (valores de meia-vida entre 15-105 dias) que atrazina (7-17 dias). O solo com adição de vinhaça favoreceu a degradação de fipronil e atrazina, enquanto adição da torta de filtro desacelerou o processo. Os valores do coeficiente de sorção (Kd) foram determinados para fipronil (5,1-13,2mL g-1) e atrazina (0,5-1,5mL g-1). Apenas os resíduos palha e torta de filtro aumentaram a sorção de fipronil quando adicionados ao solo, enquanto todos os resíduos aumentaram a sorção de atrazina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Brazil, off-season rainfed maize is usually affected by limited water due to irregularities in rainfall. Alternatives to mitigate these effects include ground cover to reduce evaporation losses and the use of cultivars with a deeper rooting system. We conducted a study in Goias, Brazil, to evaluate the influence of different crop management strategies to mitigate the effect of limited water in maize yield. Modeling was used to simulate scenarios that consisted of 0, 3.5 and 5.0 t ha-1 of soybean residue left on the soil surface combined with cultivar ideotypes with 0.30 m, 0.50 m 0.70 m deep rooting system grown with 60 and 340 kg ha-1of nitrogen. The results showed that maintaining residue in the soil surface in combination with the use of cultivars with deeper rooting systems favored higher yields of off-season maize. Our results also indicated that a cultivar with rooting system in the top 0.50 m of the soil fertilized with a high nitrogen rate tended to be more efficient in the use of the soil available water

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Inadequate soil use and management practices promote commonly negative impacts on the soil constituents and their properties, with consequences to ecosystems. As the soil mineralogy can be permanently altered due to soil use, this approach can be used as a tool to monitor the anthropogenic pressure. The objective of the present study was to assess the mineralogical alterations of a Brazilian regosol used for grape production for 40 years in comparison with a soil under natural vegetation (forest), aiming to discuss anthropogenic pressure on soils. Material and methods Soil samples were collected at depths of 0?0.20 and 0.20?0.40 m from vineyard production and natural vegetation sites. Physical and chemical parameters were analysed by classic approaches. Mineralogical analyses were carried out on <2 mm, silt and clay fractions. Clay minerals were estimated by the relative percentage of peak surface area of the X-ray patterns. Results and discussion Grape production reduced the organic matter content by 28% and the clay content by 23% resulting in a decreasing cation exchange capacity. A similar clay fraction was observed in both soils, containing kaolinite, illite/mica and vermiculite with hydroxy-Al polymers interlayered. Neither gibbsite nor chlorite was found. However, in the soil under native vegetation, the proportion of illite (79 %) was higher than vermiculite (21 %). Whereas, in the soil used for grape production during 40 years, the formation of vermiculite was promoted. Conclusions Grape production alters the proportions of soil constituents of the regosol, reducing clay fraction and organic matter contents, as well as promoting changes in the soil clay minerals with the formation of vermiculite to the detriment of illite, which suggests weathering acceleration and susceptibility to anthropogenic pressure. Recommendations and perspectives Ecosystems in tropical and subtropical climates can be more easily and permanently altered due to anthropogenic pressure, mainly as a consequence of a great magnitude of phenomena such as temperature amplitude and rainfall that occurs in these regions. This is more worrying when soils are located on steep grades with a high anthropogenic pressure, like regosols in Southern Brazil. Thus, this study suggests that changes in soil mineralogy can be used as an important tool to assess anthropogenic pressure in ecosystems and that soil quality maintenance should be a priority in sensible landscapes to maintain the ecosystem quality.