12 resultados para Cultivation without soil
em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)
Resumo:
Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.
Resumo:
ABSTRACT: The use of cover crops has recently increased and represents an essential practice for the sustainability of no-tillage systems in the Cerrado region. However, there is little information on the effects of nitrogen fertilization and cover crop use on nitrogen soil fractions. This study assessed changes in the N forms in soil cropped to cover crops prior to corn growing. The experiment consisted of a randomized complete block design arranged in split-plots with three replications. Cover crops were tested in the plots, and the N topdressing fertilization was assessed in the subplots. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis, Canavalia brasiliensis M. ex Benth, Cajanus cajan (L.) Millsp, and Sorghum bicolor (L.) Moench. After corn harvesting, the soil was sampled at depths of 0.00-0.10 and 0.10-0.20 m. The cover crops showed different effects at different soil depths. The soil cultivated with U. ruziziensis showed higher contents of total-N and particulate-N than the soil cultivated with C. cajan. Particulate-N was the most sensitive to changes in the soil management among the fractions of N assessed. The soil under N topdressing showed a lower content of available-N in the 0.10-0.20 m layer, which may be caused by the season in which the sampling was conducted or the greater uptake of the available-N by corn.
Resumo:
The aim of this study was to assess the organic matter changes in quantity and quality, particularly of the humic fraction in the surface layer (0?20 cm), of a Typic Plinthustalf soil under different management of plant mixtures used as green manure for mango (Mangifera indica L.) crops. The plant mixtures, which were seeded between rows of mango trees, were formed by two groups of leguminous and non -leguminous plants. Prior to sowing, seeds were combined in different proportions and compositions constituting the following treatments: 100% non-leguminous species (NL); 100% leguminous species (L); 75% L and 25% NL; 50% L and 50% NL; 25% L and 75% NL; and 100% spontaneous vegetation, considered a control. The plant mixtures that grew between rows of mango trees caused changes in the chemical composition of the soil organic matter, especially for the treatments 50% L and 50% NL and 25% L and 75% NL, which increased the content of humic substances in the soil organic matter. However, the treatment 25% L and 75% NL was best at minimising loss of total organic carbon from the soil. The humic acids studied have mostly aliphatic characteristics, showing large amounts of carboxylic and nitrogen groups and indicating that most of the organic carbon was formed by humic substances, with fulvic acid dominating among the alkali soluble fractions.
Soil management systems for sustainable melon cropping in the Submedian of the São Francisco Valley.
Resumo:
Changes in soils management systems, including the application of green manure, are able to increase crop productivity. The aim of this study was to propose a soil management system with the use of green manure to improve the nutritional status and melon productivity in the submedian of the São Francisco Valley. The experiment was installed in Typic Plinthustalf and conducted in split plot. There were two soil tillage systems, tillage (T) and no tillage (NT), and three types of green manure (two vegetal cocktails: VC1- 75% legumes (L) + 25% non-legumes (NL); VC2- 25% L+ 75% NL and spontaneous vegetation (SV)). The experimental design was a randomised block with four replications. Fourteen species of legumes, grasses and oilseeds were used for the composition of the plant cocktails. We evaluated production of the dry shoot and root biomass and carbon and nutrient accumulation by green manures and melon plant. Data were subjected to analysis of variance and the treatment means were compared by Tukey´s test (P<0.05). Shoot biomass production and carbon and nutrient accumulation were higher in plant mixtures compared to spontaneous vegetation. The root system of the plant cocktails added larger quantities of biomass and nutrients to the soil to a depth of 0.60 m when compared to the spontaneous vegetation. The cultivation of plant cocktails with soil tillage, regardless of their composition, is a viable alternative for adding biomass and nutrients to the soil in melon crops in semi-arid conditions, providing productivity increases.
Resumo:
ABSTRACT: Changes in carbon stocks in different compartments of soil organic matter of a clayey Latossolo Vermelho Distrófico (Typic Haplustox), caused by the substitution of native savanna vegetation (cerrado sensu stricto) by agroecosystems, were assessed after 31 years of cultivation. Under native vegetation, a stock of 164.5 Mg ha-1 C was estimated in the 0.00-1.00 m layer. After 31 years of cultivation, these changes in soil C stocks were detected to a depth of 0.60 m. In the case of substitution of cerrado sensu stricto by no-tillage soybean-corn rotation, a reduction of at least 11 % of the soil C pools was observed. However, the adoption of no-tillage as an alternative to tillage with a moldboard plow (conventional system) reduced CO2 emissions by up to 12 %.
Resumo:
The water availability for flood irrigated rice (Oryza sativa L.) is decreasing worldwide. Therefore, developing technologies to allow growing rice in aerobic condition, such as a no-tillage system (NTS) can contribute to produce upland rice grains without yield losses and also in saving more water. The objective of this study was to determine the effect of soil management, seed treatment and compaction on the sowing furrow on grain yield of upland rice genotypes. We made two trials, one in an NTS and another using conventional tillage, CT (one plowing and two diskings). The field experiments were performed in the Central Region of Brazil in Cerrado soils. For each trial, the experimental design was a randomized block design in a factorial scheme, with three replications. The treatments consisted of a combination of 10 genotypes with 2 compaction pressures on the sowing furrow (25 kPa and 126kPa) and 2 types of seed treatment (with and without pesticide). Under CT, the seed treatment did not contribute to increase upland rice grain yields. However, under NTS the grain yield of some genotypes [BRS Esmeralda (from 723 to 1,766 kg ha-1), BRS Pepita (from 930 to 1,874 kg ha-1), AB072044 (from 523 to 1,579 kg ha-1), and AB072085 (from 632 to 1,636 kg ha-1) at 25 kPA soil compaction pressure, and Sertaneja (from 994 to 2,167 kg ha-1), BRS Pepita (from 1,161 to 2,100 kg ha-1), and AB072085 (from 958 to 2,213 kg ha-1), at 126 kPA soil compaction pressure] increased with the use of this practice. At CT the higher soil compaction pressure on the sowing furrow (from 25 kPa to 126 kPa) increased rice grain yield only when it was used seed treatment and the genotypes Serra Dourada (from 1,239 to 2,178 kg ha-1), Sertaneja (from 1,510 to 2,379 kg ha-1), and Cambará (from 1,877 to 2,831 kg ha-1). On the other hand, under NTS, increasing soil compaction pressure on the sowing furrow allowed for an increased rice grain yield of Serra Dourada (from 1,553 to 2,347 kg ha-1), Esmeralda (from 723 to 1,643 kg ha-1), AB072044 (from 523 to 2,040 kg ha-1), and Cambará (from 1,243 to 2,032 kg ha-1) without seed treatment and Sertaneja (from 1,385 to 2,167 kg ha-1) and AB072044 (from 1,579 to 2,356 kg ha-1) with seed treatment. In CT the most productive genotypes were AB062008 (2,714 kg ha-1) and BRSMG Caravera (2,479 kg ha-1), while at NTS were the genotypes: BRSGO Serra Dourada (2,118 kg ha-1), AB072047 (1,888 kg ha-1), AB062008 (1,823 kg ha-1), BRSMG Caravera (1,737 kg ha-1), Cambará (1,716 kg ha-1), AB072044 (1,625 kg ha-1), BRS Esmeralda (1,604 kg ha-1), and BRS Pepita (1,516 kg ha-1).
Resumo:
The sugarcane in Brazil is passing through a management transition that is leading to the abolition of pre-harvest burning. Without burning, large amounts of sugarcane trash is generated, and there is a discussion regarding the utilization of this biomass in the industry versus keeping it in the field to improve soil quality. To study the effects of the trash removal on soil quality, we established an experimental sugarcane plantation with different levels of trash over the soil (0%, 50% and 100% of the original trash deposition) and analyzed the structure of the bacterial and fungal community as the bioindicators of impacts. The soil DNA was extracted, and the microbial community was screened by denaturing gradient gel electrophoresis in two different seasons. Our results suggest that there are no effects from the different levels of trash on the soil chemistry and soil bacterial community. However, the fungal community was significantly impacted, and after twelve months, the community presented different structures among the treatments.
Resumo:
Soil organic matter (SOM) is important to fertility, since it performs several functions such as cycling, water and nutrient retention and soil aggregation, in addition to being an energy requirement for biological activity. This study proposes new trends to the Embrapa, Walkley-Black, and Mebius methods that allowed the determination of SOM by spectrophotometry, increasing functionality. The mass of 500 mg was reduced to 200 mg, generating a mean of 60 % saving of reagents and a decrease of 91 % in the volume of residue generated for the three methods without compromising accuracy and precision. We were able to optimize conditions for the Mebius method and establish the digestion time of maximum recovery of SOM by factorial design and response surface. The methods were validated by the estimate of figures of merits. Between the methods investigated, the optimized Mebius method was best suited for determining SOM, showing near 100 % recovery.
Resumo:
Abstract:The aim of this study was to evaluate the effect of different nitrogen doses and five period of sample collection, on soil microbial biomass - nitrogen (SMB-N), total nitrogen (total N) and percentual ratio of the microbial biomass and total N (SMB-N/total N) in a Oxisol cultivated with barley (Hordeum vulgare L.). The experiment was installed in June, 2005, in an area located at Embrapa Cerrados, Federal District. The experimental design was a randomized block, with three replicates. The plots received doses of nitrogen: 20 - 40 - 80 kg ha-1 N and a control without it and the subplots were period of soil sample. Three applications of N were realized: 10 kg ha-1 on the 5th day (06/14) after sowing; the rest of N was parceled in two applications with fertigation, on tillage, on the 27th (07/08) DAP, e no 43rd (07/22) DAP. Soil samples layer (0 - 10 cm deep) were collected for (SMB-N) determination and total N in six periods: 02 days before of the first fertigation; 02 days after of the first fertigation; 04 days before of the last fertigation and 04 days after of the last fertigation; on flowering stage and after harvesting. There was effect of the doses of N and the period of soil collection on the SMB-N, total N and in the ratio SMB-N/total N. The average values of total N revealed steadier in short-term (cycle of the culture) and this was not a good parameter to evaluate the behavior and N transformations in the soil-plant system. Resumen: El objetivo de este estudio fue evaluar el efecto de diferentes dosis de nitrógeno y cinco período de muestreo en la biomasa microbiana del complejo suelo - nitrogeno (BMS-N), nitrógeno total (N total) y la relación porcentual de la biomasa microbiana y N total (BMS-N/N total) en un Oxisol cultivado con cebada (Hordeum vulgare L.). El estudio se inició en junio de 2005 en la estación experimental de la Empresa de Pesquisa Agropecuaria (Embrapa-Cerrados), Distrito Federal, Brazil. El experimento se dispuso en bloques al azar con tres repeticiones. Las parcelas recibieron dosis de nitrógeno: 20 - 40 - 80 kg/ha de N más un control sin N, y las subparcelas fueron el periodo de muestro. Las aplicaciones de N se realizaron de la forma siguiente: cinco días después de la siembra (dds) se aplicaron 10 kg/ha y el resto de la dosis se aplicó con fertirrigación en dos dosis 27 y 43 dds. Las muestras de suelo (0-10 cm de profundidad) para determinar BMS-N y N total fueron tomadas, 2 días antes e igual número de días después de la primera fertirrigación y 4 días antes y después de la última, en floración y después de la cosecha. No se encontró efecto de las dosis de N y el período de muestreo en el BMS-N, N total y en la relación BMS-N/N total. Los valores medios de N total fueron más estable en el corto plazo (ciclo de la cultivo) lo que indica que éste no es un buen parámetro para evaluar la dinámica del N y sus transformaciones en el sistema suelo-planta.
Resumo:
Biochar has been used worldwide as soil amendment. Due to the high sorption capacity of organic compounds by charcoal in general, the use of biochar can change the soil sorptive properties, that could result in a environmental protective strategy in one hand and/or in need of higher pesticides doses in another hand. However no data in the literature is available about the long term effect of biochar application in the sorptive properties of the soil, even studies about the sorptive properties of soil treated with biochar are scarce, the few available papers are with pure biochar. This unprecedented work, evaluating the sorption of atrazine in a clayed soil treated with biochar, under experimental field conditions, evaluated the sorption isotherms one and three years after the single biochar application (16 Mg ha-1 of biochar). One year after the biochar application the Kf was two times higher for the biochar amended soil than for the control one (without biochar). This effect decreases after three years from the application, but it is even significantly higher (50% higher) than the control treatment.
Resumo:
Land use change from native forests to pastures in the tropics have impact on global carbon (C) cycle through increased rates of C emissions to the atmosphere and the loss of above- and belowground C accumulation and storage capacity (SILVER et al., 2000). This study was conducted to determine the carbon stock in a Ultisol under a pure Brachiaria humidicola (Rendle) Scheick pasture and a mixed pasture of B. humidicola and Arachis pintoi Krapov. & W. C. Greg cv. BRS Mandobi, both without fertilization.
Resumo:
Abstract: The objectives of this study were to evaluate the combined effects of soil bioticand abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two typesofsewagesludge intosoil ina 5-years field assay under tropical conditions and topredict the effectsof these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. Amultiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil.