3 resultados para Chemo-spectrophotometric evolution models
em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)
Resumo:
Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation?atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.
Resumo:
2008
Resumo:
The GxE interaction only became widely discussed from evolutionary studies and evaluations of the causes of behavioral changes of species cultivated in environments. In the last 60 years, several methodologies for the study of adaptability and stability of genotypes in multiple environments trials were developed in order to assist the breeder's choice regarding which genotypes are more stable and which are the most suitable for the crops in the most diverse environments. The methods that use linear regression analysis were the first to be used in a general way by breeders, followed by multivariate analysis methods and mixed models. The need to identify the genetic and environmental causes that are behind the GxE interaction led to the development of new models that include the use of covariates and which can also include both multivariate methods and mixed modeling. However, further studies are needed to identify the causes of GxE interaction as well as for the more accurate measurement of its effects on phenotypic expression of varieties in competition trials carried out in genetic breeding programs.