2 resultados para greedy-rotation-greedy (GRG)
em Repositorio Academico Digital UANL
Resumo:
En esta tesis se introduce una variante del Problema del Agente Viajero Selectivo, también conocido en la literatura como Orienteering Problem (OP). En el OP se tiene un conjunto de clientes potenciales, a cada uno de los cuales se le asocia una puntuación o beneficio que recibe el agente al visitarlo, el objetivo es el de diseñar una ruta que comience y termine en el depósito y que maximice el puntaje colectado, tomando en cuenta que existe un límite máximo en la duración de la ruta. En este trabajo se consideran restricciones de conflictos entre clientes, es decir, si dos de ellos tienen conflicto, no pueden ser incluidos ambos en la ruta; por otra parte, existe un subconjunto de clientes que deben ser visitados de manera obligatoria. Se proponen dos modelos matemáticos del problema, cuya diferencia principal es la manera en que aborda la eliminación de ciclos. El primer modelo usa restricciones de tipo secuencial inspiradas en las propuestas por Miller et al. (1960) y el segundo utiliza restricciones basadas en flujo de múltiples productos y se basan en las restricciones propuestas por Wong (1980) y Claus (1984). Asimismo, se proponen dos algoritmos para la solución del problema planteado, el primero es de tipo heurístico y está basado en un esquema GRASP (Greedy Randomized Adaptive Search Procedure) reactivo, cuya fase de mejora es un método tipo VNS (Variable Neighborhood Search) general, el segundo es una estrategia de descomposición basada en generación de columnas. El desempeño de los algoritmos propuestos es evaluado a través de experimentos computacionales sobre un gran conjunto de instancias y los resultados obtenidos son comparados contra las soluciones ´optimas obtenidas al resolver los modelos matemáticos haciendo uso del solver Cplex 12.6.
Resumo:
OBJECTIVES AND STUDY METHOD: There are two subjects in this thesis: “Lot production size for a parallel machine scheduling problem with auxiliary equipment” and “Bus holding for a simulated traffic network”. Although these two themes seem unrelated, the main idea is the optimization of complex systems. The “Lot production size for a parallel machine scheduling problem with auxiliary equipment” deals with a manufacturing setting where sets of pieces form finished products. The aim is to maximize the profit of the finished products. Each piece may be processed in more than one mold. Molds must be mounted on machines with their corresponding installation setup times. The key point of our methodology is to solve the single period lot-sizing decisions for the finished products together with the piece-mold and the mold-machine assignments, relaxing the constraint that a single mold may not be used in two machines at the same time. For the “Bus holding for a simulated traffic network” we deal with One of the most annoying problems in urban bus operations is bus bunching, which happens when two or more buses arrive at a stop nose to tail. Bus bunching reflects an unreliable service that affects transit operations by increasing passenger-waiting times. This work proposes a linear mathematical programming model that establishes bus holding times at certain stops along a transit corridor to avoid bus bunching. Our approach needs real-time input, so we simulate a transit corridor and apply our mathematical model to the data generated. Thus, the inherent variability of a transit system is considered by the simulation, while the optimization model takes into account the key variables and constraints of the bus operation. CONTRIBUTIONS AND CONCLUSIONS: For the “Lot production size for a parallel machine scheduling problem with auxiliary equipment” the relaxation we propose able to find solutions more efficiently, moreover our experimental results show that most of the solutions verify that molds are non-overlapping even if they are installed on several machines. We propose an exact integer linear programming, a Relax&Fix heuristic, and a multistart greedy algorithm to solve this problem. Experimental results on instances based on real-world data show the efficiency of our approaches. The mathematical model and the algorithm for the lot production size problem, showed in this research, can be used for production planners to help in the scheduling of the manufacturing. For the “Bus holding for a simulated traffic network” most of the literature considers quadratic models that minimize passenger-waiting times, but they are harder to solve and therefore difficult to operate by real-time systems. On the other hand, our methodology reduces passenger-waiting times efficiently given our linear programming model, with the characteristic of applying control intervals just every 5 minutes.