4 resultados para electroquímica

em Repositorio Academico Digital UANL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propósito y Método del estudio: En este trabajo se estudió la influencia del método de síntesis en las propiedades fisicoquímicas, fotocatalíticas y fotoelectroquímicas del BaBiO3 y el Sr2Bi2O5. En primera instancia, se realizó la síntesis de los materiales por la técnica de estado sólido (pos-tratamiento con molienda mecánica) e hidrotermal. Para la síntesis en hidrotermal se exploraron 3 diferentes temperaturas: 130, 150, 170 °C. Los materiales obtenidos fueron caracterizados mediante Difracción de Rayos-X (DRX), Espectroscopía de Reflectancia Difusa (ERD), Microscopía Electrónica de Barrido (MEB) y Fisisorción de Nitrógeno. Posteriormente se realizó la evaluación de las propiedades fotocatalíticas de los materiales obtenidos en la degradación de rodamina B. Las pruebas fotocatalíticas se realizaron en un reactor tipo Batch, utilizando una lámpara de Xenón de 6000 K. El estudio fotocatalítico finalizó con el cálculo de parámetros cinéticos tales como la constante de velocidad aparente (k) y tiempo de vida media (t1/2). Los resultados mostraron que el BaBiO3 sintetizado por reacción de estado sólido presentó la mayor eficiencia fotocatalitica. Para incrementar la eficiencia fotocatalitica de los materiales sintetizados se adicionaron superficialmente partículas de NiO en porcentajes de 3, 5 y 10 % al bismutato de estroncio y bario, utilizando para ello el método de impregnación. Los materiales fueron caracterizados y probados en la degradación de rodamina B. Por otro lado, para conocer el grado de eficiencia de los materiales se realizó el estudio fotoelectroquímico para determinar la posición de las bandas de conducción y valencia de cada uno de ellos. El grado de mineralización de la rodamina B se analizó mediante análisis de Carbón Orgánico Total (COT) y adicionalmente se realizaron pruebas de reproducibilidad para determinar la estabilidad de los materiales ante la exposición de ciclos sucesivos de irradiación. Contribuciones y conclusiones: Se lograron obtener los Bismutatos de Estroncio y Bario mediante la reacción en estado sólido a 800 y 900 °C. Mientras que por el método de hidrotermal se obtuvieron los materiales a 130, 150 y 170°C, seguido de un tratamiento térmico a 700°C. Los resultados de electroquímica mostraron que el material de Sr2Bi2O5 es apto para generar procesos de oxidación y reducción. La adición de NiO no proporcionó mejora en la eficiencia fotocatalítica, lo que se atribuyó a las aglomeraciones de partículas sobre la superficie de los materiales. Los materiales obtenidos por estado sólido presentaron la mayor actividad fotocatalítica en degradación de rodamina B, comparados con los obtenidos por el método de hidrotermal, por lo que el factor que domina la actividad fotocatalítica de estos materiales fue principalmente la cristalinidad. Además los materiales presentaron buena estabilidad ante ciclos sucesivos de irradiación y mostraron un buen grado de mineralización de la rodamina B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uno de los nanos materiales más investigados actualmente es la nano-sílice, la cual ha despertado el interés de muchos investigadores debido a que está aportando grandes beneficios a los materiales base cemento. La nano-sílice ha demostrado que mejora las propiedades de los materiales cementantes tanto en estado fresco como en endurecido. Puede modificar las propiedades reológicas o la trabajabilidad en estado fresco, así como la resistencia a la compresión y la porosidad de las estructuras después de la etapa de endurecimiento. Es por esto que estas nano-partículas representan la oportunidad de realizar importantes avances que permitan optimizar el uso de los recursos actuales y el aprovechamiento de los materiales cementantes. En este trabajo, se está estudiando la posibilidad de utilizar la nano-sílice como un tratamiento superficial que ayude a disminuir el impacto del medio ambiente en estructuras en servicio que puedan presentar un cierto deterioro. Se analiza la utilización de nano-partículas en concreto en estado endurecido con el fin de mejorar su desempeño y sus aspectos de durabilidad. Por medio del método de migración electroquímica, basado en el transporte de partículas con cierta carga bajo la acción de un campo eléctrico, se favorece la penetración de nano-partículas de sílice hacia el interior de un mortero de cemento Portland desde una cara expuesta a una solución coloidal. Las partículas se mueven por acción del campo eléctrico hacia el ánodo situado en la cara opuesta de la probeta de mortero, dando lugar a una interacción química con la microestructura de la matriz cementante. Se ha observado que las partículas de sílice en esta solución coloidal empiezan a aglomerarse después de cierto periodo de tiempo y solidifican sobre la superficie expuesta de la probeta de mortero. Este material sólido ocasiona que la cantidad de corriente que circula por el circuito disminuya y por consiguiente baje la efectividad del mismo, ya que las partículas con carga eléctrica se mueven con mayor dificultad en medios solidos que en líquidos. Se encontró que la incorporación de nano-partículas de sílice a la matriz de mortero endurecido puede afectar el desempeño de una manera positiva frente a la penetración de cloruros, carbonatación y absorción de agua por capilaridad. De acuerdo a las respuestas eléctricas durante el tratamiento, se encontró que la resistencia eléctrica de las probetas aumenta, lo cual puede relacionarse con la modificación del sistema poroso debido al efecto filler de las nano-partículas; es decir, al refinar los poros, las cargas eléctricas encuentran menos espacio para moverse. Además las nano-partículas afectan químicamente a las fases de la pasta del cemento, ya que se encontró por microscopia electrónica de barrido que a una distancia entre 1.5 y 2 mm, aparecen aglomerados que enriquecen de silicio a las fases de la matriz del mortero y en otros casos, la migración cambia totalmente la apariencia del mortero y ocasiona valores de relaciones Ca/Si muy por debajo de los valores convencionales registrados en la literatura, con lo que es posible pensar que puede existir una actividad puzzolanica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propósito y Método del Estudio: La demanda de baterías recargables ha aumentado de manera significativa cada año durante la última década impulsada por las necesidades vinculadas con el desarrollo tecnológico (portabilidad, alto desempeño de dispositivos electrónicos, vehículos eléctricos). La batería ión-litio es el dispositivo de mayor consumo, está diseñado para el almacenamiento y conversión de energía eléctrica basado en electrodos de intercalación. En la actualidad los esfuerzos están dirigidos a la mejora y/o remplazo de los componentes actuales de las baterías: ánodo, cátodo (LiCoO2) y electrolito, por materiales que tengan más altos rendimientos en términos de energía, potencia, costo, confiabilidad, tiempo de vida y seguridad. En este trabajo de investigación se prepararon y caracterizaron cuatro compuestos Na3V2-xAlx(PO4)2F3 (x= 0, 0.02, 0.05, 0.1) como materiales catódicos para baterías ión-litio. Estos materiales se obtuvieron mediante el método Pechini. La caracterización morfológica y microestructural se llevó a cabo por Microscopia Electrónica de Barrido de Emisión de Campo (FESEM), el análisis textural por Fisisorción de N2 por la técnica BET; la composición química y cristalográfica se determinó por Espectroscopia de Emisión de Plasma de Acoplamiento Inductivo (ICP-OES), Espectroscopia de Energía Dispersiva de Rayos X (EDXS) y Difracción de Rayos X (XRD), mientras que por Espectroscopia de Impedancia Electroquímica (EIS) se realizó la caracterización eléctrica; por último la aplicación de los materiales como cátodos en baterías ión-litio se evaluó mediante pruebas Galvanostáticas de carga/descarga. Contribuciones y Conclusiones: Se establecieron las condiciones de síntesis para los materiales Na3V2-xAlx(PO4)2F3 x= 0, 0.02, 0.05 y 0.1 vía método Pechini. El dopaje de la fase Na3V2-xAlx(PO4)2F3 se llevó a cabo con éxito hasta x=0.1 moles de aluminio, dado que se conservó la estructura cristalina tetragonal del Na3V2(PO4)2F3 (JCPDS 01-089-8485). Los materiales obtenidos tienen una microestructura formada por partículas de forma granular de tamaño nanométrico (40-100nm), esto se atribuye al efecto del carbono residual en la muestra (en promedio 8% en peso) ya que inhibe el crecimiento de partícula, además que permite mejorar el contacto entre las partículas lo que beneficia a la conductividad electrónica del material. Los materiales obtenidos tienen en promedio un tamaño de poro de 20 nm, con un área superficial del orden 30 m2/g. La fase con 0.05 moles de aluminio presentó el mejor resultado bajo las condiciones de estudio. Conjuga dos de las características básicas de una batería, presenta una alta capacidad de carga/descarga (123/101 mAh/g a un voltaje de celda de 4.4 V vs Li) y una buena capacidad de retención (82%), en comparación al material sin dopar (128/63 mAh/g y 49% de retención). Por lo anterior, el dopaje de la fase Na3V2(PO4)2F3 con Al, logró la estabilización de la estructura frente a los procesos de ciclado. Por lo cual es un material prometedor para su aplicación como cátodos en baterías ión-litio o ión-sodio.