1 resultado para Process parameters
em Repositorio Academico Digital UANL
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Aston University Research Archive (34)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (10)
- CentAUR: Central Archive University of Reading - UK (14)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (35)
- Cochin University of Science & Technology (CUSAT), India (20)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (5)
- Digital Peer Publishing (5)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Ecology and Society (1)
- Greenwich Academic Literature Archive - UK (14)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (76)
- Instituto Politécnico de Bragança (3)
- Instituto Politécnico do Porto, Portugal (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (2)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (67)
- Queensland University of Technology - ePrints Archive (296)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (93)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (16)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Montréal, Canada (2)
- Université Laval Mémoires et thèses électroniques (4)
- University of Queensland eSpace - Australia (11)
Resumo:
The work of this thesis is concerned with fitting Hypo-exponential and Erlang phase type distributions for modeling real life processes with non-exponential service time. There exist situations where exponential distributions cannot explain the distribution of service time properly. This thesis presents the application of two traditional statistical estimation techniques to approximate the service distributions of processes with coefficient of variation less than one. It also presents an algorithm to fit Hypo-exponential distribution for complex situations which can’t be handled properly with traditional estimation techniques. The result shows the effect of variation of sample size and other parameters on the efficiency of the estimation techniques by comparing their respective outputs. Furthermore it checks how accurately the proposed algorithm approximates a given distribution.