3 resultados para Nitrogen analysis

em Repositorio Academico Digital UANL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotope analyses were applied to explore the relative dietary nitrogen contributions from fish meal and pea meal (Pisum sativum) to muscle tissue of Pacific white shrimp postlarvae (141 ± 31 mg) fed low protein diets having different proportions of both ingredients as the sole dietary protein sources. A negative control diet was formulated to contain 100% pea meal and six more isoproteic diets to have decreasing levels of pea meal-derived nitrogen: 95%, 85%, 70%, 55%, 40% and 0% of the initial level. Growth rates were negatively correlated to dietary pea protein inclusion due to progressive essential amino acid deficiencies (sulphur amino acids, threonine, lysine, histidine). The nitrogen turnover rate significantly increased in muscle tissue of shrimps fed diets having high levels of pea meal; however, contrary to observations from a previous study using soy protein, the relative contributions of dietary nitrogen from pea meal to shrimp muscle tissue were equal or higher than expected contributions established by the dietary formulations. Results highlight the effectiveness of stable isotope analysis in assessing the nutritional contributions of alternative ingredients for aquaculture feeds and the potential suitability of pea as a source of protein (provided the diets are nutritionally balanced)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nutritional contribution of the dietary nitrogen, carbon and total dry matter supplied by fish meal (FM), soy protein isolate (SP) and corn gluten (CG) to the growth of Pacific white shrimp Litopenaeus vannamei was assessed by means of isotopic analyses. As SP and CG are ingredients derived from plants having different photosynthetic pathways which imprint specific carbon isotope values to plant tissues, their isotopic values were contrasting. FM is isotopically different to these plant meals with regards to both, carbon and nitrogen. Such natural isotopic differences were used to design experimental diets having contrasting isotopic signatures. Seven isoproteic (36% crude protein), isoenergetic (4.7 kcal g−1) diets were formulated; three diets consisted in isotopic controls manufactured with only one main ingredient supplying dietary nitrogen and carbon: 100% FM (diet 100F), 100% SP (diet 100S) and 100% CG (diet 100G). Four more diets were formulated with varying mixtures of these three ingredients, one included 33% of each ingredient on a dietary nitrogen basis (diet 33FSG) and the other three included a proportion 50:25:25 for each of the three ingredients (diets 50FSG, 50SGF and 50GFS). At the end of the bioassay there were no significant differences in growth rate in shrimps fed on the four mixed diets and diet 100F (k=0.215–0.224). Growth rates were significantly lower (k=0.163–0.201) in shrimps grown on diets containing only plant meals. Carbon and nitrogen stable isotope values (δ13C and δ15N) were measured in experimental diets and shrimp muscle tissue and results were incorporated into a three-source, two-isotope mixing model. The relative contributions of dietary nitrogen, carbon and total dry matter from FM, SP and CG to growth were statistically similar to the proportions established in most of the diets after correcting for the apparent digestibility coefficients of the ingredients. Dietary nitrogen available in diet 33FSG was incorporated in muscle tissue at proportions representing 24, 35 and 41% of the respective ingredients. Diet 50GSF contributed significantly higher amounts of dietary nitrogen from CG than from FM. When the level of dietary nitrogen derived from FM was increased in diet 50FSG, nutrient contributions were more comparable to the available dietary proportions as there was an incorporation of 44, 29 and 27% from FM, SP and CG, respectively. Nutritional contributions from SP were very consistent to the dietary proportions established in the experimental diets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon and nitrogen stable isotope values were determined in Pacific white shrimp (Litopenaeus vannamei) with the objective of discriminating animals produced through aquaculture practices from those extracted from the wild. Farmed animals were collected at semi-intensive shrimp farms in Mexico and Ecuador. Fisheries-derived shrimps were caught in different fishing areas representing two estuarine systems and four open sea locations in Mexico and Ecuador. Carbon and nitrogen stable isotope values (13CVPDB and 15NAIR) allowed clear differentiation of wild from farmed animals. 13CVPDB and 15NAIR values in shrimps collected in the open sea were isotopically enriched (−16.99‰ and 11.57‰), indicating that these organisms belong to higher trophic levels than farmed animals. 13CVPDB and 15NAIR values of farmed animals (−19.72‰ and 7.85‰, respectively) partially overlapped with values measured in animals collected in estuaries (−18.46‰ and 5.38‰, respectively). Canonical discriminant analysis showed that when used separately and in conjunction, 13CVPDB and I5NAIR values were powerful discriminatory variables and demonstrate the viability of isotopic evaluations to distinguish wild-caught shrimps from aquaculture shrimps. Methodological improvements will define a verification tool to support shrimp traceability protocols.