2 resultados para Linear programming

em Repositorio Academico Digital UANL


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES AND STUDY METHOD: There are two subjects in this thesis: “Lot production size for a parallel machine scheduling problem with auxiliary equipment” and “Bus holding for a simulated traffic network”. Although these two themes seem unrelated, the main idea is the optimization of complex systems. The “Lot production size for a parallel machine scheduling problem with auxiliary equipment” deals with a manufacturing setting where sets of pieces form finished products. The aim is to maximize the profit of the finished products. Each piece may be processed in more than one mold. Molds must be mounted on machines with their corresponding installation setup times. The key point of our methodology is to solve the single period lot-sizing decisions for the finished products together with the piece-mold and the mold-machine assignments, relaxing the constraint that a single mold may not be used in two machines at the same time. For the “Bus holding for a simulated traffic network” we deal with One of the most annoying problems in urban bus operations is bus bunching, which happens when two or more buses arrive at a stop nose to tail. Bus bunching reflects an unreliable service that affects transit operations by increasing passenger-waiting times. This work proposes a linear mathematical programming model that establishes bus holding times at certain stops along a transit corridor to avoid bus bunching. Our approach needs real-time input, so we simulate a transit corridor and apply our mathematical model to the data generated. Thus, the inherent variability of a transit system is considered by the simulation, while the optimization model takes into account the key variables and constraints of the bus operation. CONTRIBUTIONS AND CONCLUSIONS: For the “Lot production size for a parallel machine scheduling problem with auxiliary equipment” the relaxation we propose able to find solutions more efficiently, moreover our experimental results show that most of the solutions verify that molds are non-overlapping even if they are installed on several machines. We propose an exact integer linear programming, a Relax&Fix heuristic, and a multistart greedy algorithm to solve this problem. Experimental results on instances based on real-world data show the efficiency of our approaches. The mathematical model and the algorithm for the lot production size problem, showed in this research, can be used for production planners to help in the scheduling of the manufacturing. For the “Bus holding for a simulated traffic network” most of the literature considers quadratic models that minimize passenger-waiting times, but they are harder to solve and therefore difficult to operate by real-time systems. On the other hand, our methodology reduces passenger-waiting times efficiently given our linear programming model, with the characteristic of applying control intervals just every 5 minutes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives and study method: The objective of this study is to develop exact algorithms that can be used as management tools for the agricultural production planning and to obtain exact solutions for two of the most well known twodimensional packing problems: the strip packing problem and the bin packing problem. For the agricultural production planning problem we propose a new hierarchical scheme of three stages to improve the current agricultural practices. The objective of the first stage is to delineate rectangular and homogeneous management zones into the farmer’s plots considering the physical and chemical soil properties. This is an important task because the soil properties directly affect the agricultural production planning. The methodology for this stage is based on a new method called “Positions and Covering” that first generates all the possible positions in which the plot can be delineated. Then, we use a mathematical model of linear programming to obtain the optimal physical and chemical management zone delineation of the plot. In the second stage the objective is to determine the optimal crop pattern that maximizes the farmer’s profit taken into account the previous management zones delineation. In this case, the crop pattern is affected by both management zones delineation, physical and chemical. A mixed integer linear programming is used to solve this stage. The objective of the last stage is to determine in real-time the amount of water to irrigate in each crop. This stage takes as input the solution of the crop planning stage, the atmospheric conditions (temperature, radiation, etc.), the humidity level in plots, and the physical management zones of plots, just to name a few. This procedure is made in real-time during each irrigation period. A linear programming is used to solve this problem. A breakthrough happen when we realize that we could propose some adaptations of the P&C methodology to obtain optimal solutions for the two-dimensional packing problem and the strip packing. We empirically show that our methodologies are efficient on instances based on real data for both problems: agricultural and two-dimensional packing problems. Contributions and conclusions: The exact algorithms showed in this study can be used in the making-decision support for agricultural planning and twodimensional packing problems. For the agricultural planning problem, we show that the implementation of the new hierarchical approach can improve the farmer profit between 5.27% until 8.21% through the optimization of the natural resources. An important characteristic of this problem is that the soil properties (physical and chemical) and the real-time factors (climate, humidity level, evapotranspiration, etc.) are incorporated. With respect to the two-dimensional packing problems, one of the main contributions of this study is the fact that we have demonstrate that many of the best solutions founded in literature by others approaches (heuristics approaches) are the optimal solutions. This is very important because some of these solutions were up to now not guarantee to be the optimal solutions.