5 resultados para Láseres de semiconductores
em Repositorio Academico Digital UANL
Resumo:
Los óxidos de nitrógeno (NOx) son gases contaminantes que afectan al medio ambiente al ser responsables de la formación de smog fotoquímico, lluvia ácida, ozono troposférico, reducción de la capa de ozono, además de participar en el efecto invernadero en la forma de N2O. Adicionalmente, la exposición a estos gases provoca daños a la salud de los seres humanos. Una propuesta tecnológica para abordar esta problemática ambiental es su eliminación mediante un proceso fotooxidativo, lo cual requiere del empleo de óxidos semiconductores con alta actividad fotocatalítica. En el presente trabajo de investigación se valoró el alcance de la tecnología de fotocatálisis heterogénea para la purificación de aire por eliminación de gases tipo NOx. Para este propósito, en una primera parte del trabajo se construyó un reactor fotocatalítico de acuerdo a la norma internacional ISO 22197-1 con el fin de realizar las pruebas fotocatalíticas en condiciones estándar a las establecidas por la regulación internacional y dar así consistencia a los resultados obtenidos. La segunda parte del trabajo consistió en la síntesis y caracterización de los óxidos semiconductores TiO2 y ZnO por el método sol-gel para lo cual en cada caso se aplicó un diseño de experimentos con el fin de encontrar las condiciones experimentales que permitieran la obtención del mejor fotocatalizador de cada sistema en base a sus propiedades fisicoquímicas. La actividad fotocatalítica de las muestras de TiO2 y ZnO se determinó en la reacción de fotooxidación de óxido nítrico (NO) en aire bajo radiación UV. Los mejores fotocatalizadores fueron seleccionados para pruebas de desempeño variando las condiciones experimentales de la reacción fotocatalítica como el caudal volumétrico que entró al reactor, la irradiancia y la cantidad de humedad presente en el medio de reacción, evaluando además el efecto de diversas variables experimentales de la reacción fotocatalítica en sus respectivos valores. Asimismo, el seguimiento de los productos de reacción confirmó la presencia iones nitrato (NO3-) como producto mayoritario de la fotooxidación de NO, lo que dota al proceso de eliminación de NO de un carácter sustentable. En una tercera parte del trabajo se probó la actividad fotocatalítica del fotocatalizador TiO2 cuando fue incorporado en un prototipo de material de construcción. El desempeño fue probado bajo condiciones simuladas y reales de exposición a la intemperie. Los resultados obtenidos indicaron la potencial aplicación de los materiales para el desarrollo comercial de productos fotocatalíticos. En la parte final del trabajo se presentan resultados obtenidos con óxidos semiconductores alternos a los convencionales como Bi2Mo3O12 y TiO2/WO3 cuyo principal propósito fue el de desarrollar fotocatalizadores cuya activación fuera mediante absorción en la porción visible del espectro solar.
Resumo:
Propósito y Método de Estudio: Debido al incremento de la contaminación ambiental y el agotamiento de combustibles fósiles, generados a partir de la producción de energía eléctrica, se han investigado fuentes de energía alterna, tal como la energía solar, que sean amigables con el medio ambiente y ofrezcan un enorme potencial para satisfacer las futuras demandas energéticas. Actualmente, existe una búsqueda constante de nuevos materiales semiconductores que puedan ser utilizados dentro de una celda solar, a partir de métodos prácticos y que no afecten al ambiente. Por lo tanto, en el presente trabajo se investigó el desarrollo de películas delgadas de Cu3SbSe4 por medio de la técnica de depósito por baño químico (CBD) para su potencial aplicación en celdas solares. Contribuciones y Conclusiones: En este trabajo se obtuvieron películas delgadas conformadas por la fase ternaria Cu3SbSe4 y fases secundarias Cu3SbS4 y selenio elemental a partir de la técnica de depósito por baño químico. Se evaluaron las propiedades ópticas y eléctricas de las películas delgadas obtenidas, las cuales exhibieron valores de Eg de 1.63, 1.57, 1.62 eV y conductividades de 3.92, 7.20, 3.25 (Ω•cm)-1, respectivamente. Además, se determinó su tipo de conductividad, el cual resultó en un semiconductor tipo p. Esto indicó que el material tiene perspectiva de aplicación en celdas solares.
Resumo:
El presente proyecto se llevó a cabo con el fin de contribuir al desarrollo de nuevos materiales para ser implementados en dispositivos para el sensado de glucosa no ezimaticos, en este trabajo se realizaron diversos estudios sobre desarrollo de nanofibras de carbón decoradas con nanoestructuras de ZnO y CuO, en el que según reportes realizados por diversos investigadores tanto el ZnO como el CuO han presentado excelentes resultados para ser implementados en sensores de glucosa no enzimáticos gracias a las propiedades físicas y químicas que estos presentan, además que las nanofibras presentan alta porosidad, buena conducción y pueden funcionalizarse fácilmente por lo que es ampliamente utilizada como sustrato para depósito de nanoestructuras de semiconductores. Las nanofibras de carbón fueron obtenidas mediante la técnica de electrohilado utilizando como materia prima poliacrilonitrilo y posteriormente fueron sometidas a una calcinación en una atmosfera inerte. Las nanofibras de carbón fueron pre-tratadas para el depósito y crecimiento de las nanoestructuras de ZnO y CuO en donde se utilizó síntesis por hidrotermal para crecimiento de los semiconductores. La caracterización morfológica y estructural se lleco a cabo por Microscopia Electrónica de Barrido (SEM), Microcopia Electrónica de Transmisión (TEM), la composición química y cristalográfica de los materiales se determinó por medios de Espectroscopia de Infrarrojo de Transformada de Furier (FTIR), Espectroscopia de Energía Dispersiva de rayos X (EDXS), Difracción de Rayos X (DRX), así mismo se llevó a cabo el Análisis Térmico Diferencial y Análisis Térmico Gravimétrico simultáneamente, finalmente los materiales fueron caracterizados electroquímicamente por Voltamperometría Cíclica (CV) para conocer si este material podría tener potencial aplicación en sensores de glucosa no enzimático. Contribuciones y Conclusiones: Se establecieron las óptimas condiciones para obtención de las NFCs utilizando PAN como precursor mediante la técnica de electrohilado, además se consiguió determinar las condiciones para una carbonización controlada en una atmosfera de airenitrógeno. Así mismo se determinaron las condiciones óptimas para la producción de nanoestructuras de ZnO/CuO mediante el sembrado y crecimiento de nanopartículas sobre las NFCs. La diversidad en la morfología y la cantidad de material en la superficie de las nanofibras son de gran importancia en la eficiencia del material ya que ésta se ve perjudicada cuando se tiene pobres cantidades depositadas. Por otro lado, el ZnO no presenta sensibilidad por sí sólo, ante la presencia de la glucosa, del mismo modo el CuO presentó la misma incapacidad de detección. El uso de CuO como catalizador en el ZnO ha demostrado que el electrodo modificado de NFCs/ZnO-CuO presenta propiedades para oxidar la glucosa, en comparación a los de NFCs/ZnO y NFCs/CuO los cueles no presentaron ninguna actividad de oxidación para esta. Lo que permitió tener una idea que al depositar estos dos materiales depositados en el mismo sustrato, la eficiencia de éstos incrementa, lo cual podría contribuir a investigaciones futuras para estos materiales.
Resumo:
Recientemente, debido al alto consumo energético, la investigación de nuevos materiales semiconductores de bajo costo y no tóxicos para la fabricación de dispositivos fotovoltaicos ha sido de gran interés. En el presente proyecto se sintetizaron y caracterizaron películas delgadas de Cu2SnS3 y Cu4SnS4, obtenidas mediante la combinación de las técnicas de depósito por baño químico y evaporación térmica. Se obtuvieron películas delgadas de SnS de estructura ortorrómbica de 350 nm de espesor mediante baño químico como películas precursoras. Se depositaron capas de Cu (30, 50, 75 y 150nm) mediante evaporación térmica. Calentando las muestras de SnS con capas de Cu evaporado en presencia de azufre elemental (sulfurización) a 400 oC (10 oC/min) se promovió la formación de las fases ternarias Cu2SnS3 y Cu4SnS4. Los resultados de difracción de rayos-X indicaron que para el caso de las muestras con poca cantidad de Cu (30 nm), la fase binaria secundaria (SnS2) se forma junto con la fase ternaria Cu2SnS3-cúbica. Con 75nm de Cu (400 oC) solamente la fase ternaria Cu2SnS3-tetragonal está presente, y con 150 nm de Cu (400 ̊C) la fase secundaria se forma (Cu7S5). Al incrementar la temperatura de sulfurización a 450 ̊C para la condición de 150 nm de Cu, se obtiene la formación de la fase ternaria Cu4SnS4-ortorrómbica. Las propiedades ópticas para la fase Cu2SnS3-tetragonal con un espesor de 480 nm indicaron que esta presenta una transición óptica directa con brecha de energía en el rango 0.96 eV. La fase Cu4SnS4-ortorrómbica con un espesor de 760 nm, presentó una transición óptica indirecta con una brecha de energía alrededor de 0.5 eV. Además, ambas fases presentaron coeficientes de absorción óptica superiores a 104 cm-1 en el rango visible (1.6 - 3.3 eV). Las muestras no presentaron fotorrespuesta. La fase Cu2SnS3-tetragonal, mostró una conductividad eléctrica a temperatura ambiente de 17 Ω-1 cm-1 (tipo-p), con una movilidad de huecos de 3.62 cm2/V s y una concentración de huecos de 1019 cm-3, mientras que para la fase Cu4SnS4-ortorrómbico, la conductividad fue de 11 Ω-1 cm-1 (tipo-p), con una movilidad y concentración de huecos de 3.75 cm2/V s y 1019 cm-3, respectivamente.