2 resultados para Environment effects
em Repositorio Academico Digital UANL
Resumo:
Introduction: Polycyclic aromatic hydrocarbons (PaH) are a group of semi-volatile organic compounds composed of 2 or more aromatic rings, generated during incomplete combustion of organic matter. These compounds have been considered as major air pollutants, and also, there is evidence of potential mutagenic and carcinogenic effects in some of them. One of the most important sources of these compounds is industry, and particularly, in processes such as aluminium or coke production, waste incineration and petrochemical and oil reining. This last process is the subject of this article, whose aim is to review the health effects in persons potentially exposed to PAH generated during petroleum reining. Methods: a descriptive review of the available literature was performed, in which PubMed was used as an information source. The following search descriptors were used: refinery, PaH, health, health impact assessment, air pollutants and environmental, as well as their translations in Spanish. Results: eleven articles were included, and most of them correspond to epidemiological studies in which a high incidence of cancer is reported. Conclusions: The reviewed studies concur that there is a signiicant relationship between the presence of oil reineries and the increase of adverse health effects of workers and people living in areas that are close to these industries, particularly, respiratory diseases and cancer. However, it is important to develop studies that simultaneously evaluate the effects on human health and the concentration of these substances in the environment, in order to establish a more direct relationship between the 2 variables.
Resumo:
Norflurazon (4-chloro-5-(methylamino)-2-[3- trifluoromethyl)phenyl]pyridazin-3(2H)-one; C12H9ClF3N3O) is an excellent weed controlling agent being practiced in the agricultural lands. The excessive addition or the undissolved Norflurazon (maximum solubility 28 mg/L at 25 C) enters into the aquatic environment and causes the adverse effects associated with its high concentration. To avoid the perilous effects, visible light assisted photocatalysis set-up coupled with the 42 kHz ultrasound producing bath type sonicator is used to completely mineralize the Norflurazon. TiO2, ZnO and gold loaded zinc oxide nanocatalysts were utilized to study the mineralization of Norflurazon. AueZnO shows the greater efficiency for the sonophotocatalytic removal of Norflurazon among the various nanocatalysts employed to study the mineralization. The order of Norflurazon mineralization was sonophotocatalysis > sonocatalysis > photocatalysis. The additive effect was achieved for the sonophotocatalytic degradation. The high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometric (LCMS) analyses were employed to identify the various intermediates produced during the mineralization. The identification of four pseudo molecular ions and various intermediates using the LCMS analysis evidently suggests the sonophotocatalytic degradation was preceded in various decay pathways. A suitable mechanism has been proposed for the sonophotocatalytic mineralization of Norflurazon