1 resultado para Double exponential distribution
em Repositorio Academico Digital UANL
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (252)
- Biodiversity Heritage Library, United States (32)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (5)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (9)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (35)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- Galway Mayo Institute of Technology, Ireland (2)
- Georgian Library Association, Georgia (1)
- Hospital Prof. Dr. Fernando Fonseca - Portugal (1)
- Instituto Politécnico do Porto, Portugal (48)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (7)
- National Center for Biotechnology Information - NCBI (4)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositorio Academico Digital UANL (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (23)
- Repositório da Produção Científica e Intelectual da Unicamp (11)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (47)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (27)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (138)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (11)
- Universidade dos Açores - Portugal (6)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (57)
- Université de Montréal (1)
- Université de Montréal, Canada (4)
- University of Queensland eSpace - Australia (154)
- University of Southampton, United Kingdom (12)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
The work of this thesis is concerned with fitting Hypo-exponential and Erlang phase type distributions for modeling real life processes with non-exponential service time. There exist situations where exponential distributions cannot explain the distribution of service time properly. This thesis presents the application of two traditional statistical estimation techniques to approximate the service distributions of processes with coefficient of variation less than one. It also presents an algorithm to fit Hypo-exponential distribution for complex situations which can’t be handled properly with traditional estimation techniques. The result shows the effect of variation of sample size and other parameters on the efficiency of the estimation techniques by comparing their respective outputs. Furthermore it checks how accurately the proposed algorithm approximates a given distribution.