3 resultados para Calcio
em Repositorio Academico Digital UANL
Resumo:
En la presente investigación, se evaluó el efecto de adicionar nanopartículas de sílice a dos matrices cementes buscando establecer su influencia en las propiedades finales de dichos materiales. Para llevar a cabo esta evaluación, se adicionaron las nanopartículas en dosificaciones desde 0.30% - 5.0% en peso, con la finalidad de determinar la dosificación a la cual se obtienen los mejores resultados. Una de las conclusiones obtenidas de la presente investigación señala que al utilizar este tipo de materiales, el mayor reto a superar, es la correcta dispersión de las nanopartículas en las matrices cementantes, ya que de no asegurar dicha dispersión y debido a la alta energía superficial que poseen las nanopartículas, se presenta una tendencia natural a aglomerarse conformando así materiales de tamaños muy superiores a los que presentan en su estado original, perdiendo así la ventaja de su uso. Para prevenir este efecto y como resultado de la primera etapa de esta investigación, se propuso un método de mezclado en el cual se utilizó como dispersante un aditivo superplastificante (en adelante llamado SP) de base policarboxilato de calcio en dosificaciones de 0.5% en peso que se adicionó a ambas matrices cementantes. Los resultados obtenidos sugieren que algunas propiedades tales como la resistencia mecánica a la compresión, la resistencia a la flexión y sobre todo, la resistencia al ataque químico por sulfatos, se ven mejoradas mediante la adición de nanopartículas de sílice. Dicha mejoría se observó tanto en la matriz de cemento Portland como en la matriz de cemento sulfoaluminoso. Los resultados finales de la investigación mostraron que la resistencia mecánica a la compresión para un cemento Portland ordinario se mejoró hasta en un 40% a edad de 24 h cuando se adicionaron las nanopartículas en porcentaje de 0.50% en peso, sin embargo, los resultados al resto de las edades no presentaron mejoría. Para la matriz de cemento sulfoaluminoso (en adelante CSA), los mejores resultados se obtuvieron también con la dosificación de 0.50% en peso con relación al cemento, sin embargo, la mejoría no fue de la misma magnitud a la obtenida con la matriz de cemento Portland. Por otro lado, la resistencia al ataque químico por sulfatos presentó una mejoría de hasta un 80% para la matriz de cemento sulfoaluminoso cuando se adicionaron las nanopartículas de sílice. Este resultado sugiere que la matriz con nanopartículas presenta una mayor densificación propiciando por ende, un menor grado de porosidad.
Resumo:
Se realizó la bioadsorciónde Pb2+ a escala laboratorio utilizando una columna empacada con biomasa de alga Chlorella sp. inmovilizada en pellets de alginato de calcio, variando el tamaño de partícula, el pH, y la concentraciónde Pb2+.
Resumo:
En la presente investigación se estudiaron los efectos que propicia la incorporación del nanosílice geotérmica con distintas concentraciones de cloruros totales y la temperatura sobre las propiedades mecánicas, fisicoquímicas y de durabilidad, en morteros y concretos elaborados a base de cemento portland. Para ello, se evaluó en varillas embebidas en morteros, el potencial de corrosión, velocidad de corrosión, así como las pérdidas de masa asociadas a los ensayos electroquímicos y por métodos gravimétricos; además, la resistividad, la porosidad total, el pH, la pérdida de agua evaporable, la variación de la longitud (% de expansión/contracción) y la resistencia a la compresión. En concretos fue evaluada la resistencia a la compresión, el seguimiento microestructural y formación de productos de reacción con el tiempo de curado; además, en algunos de ellos se evaluó la profundidad y velocidad de carbonatación. Los resultados demostraron que el es viable el uso del residuo de nanosílice geotérmica bajo ciertas condiciones de curado como sustituto de cemento portland, obteniéndose un mejoramiento en las propiedades mecánicas, fisicoquímicas y de durabilidad en comparación con las obtenidas en concretos de 100% de cemento portland. Se observó un incremento del 22% en la resistencia a la compresión en las muestras que contenían nanosílice geotérmica sin cloruros en comparación de los concretos elaborados con 100% de cemento. Además, los concretos adicionados con 10% de nanosílice geotérmica resultaron ser más resistentes al paso del CO2. También, los morteros reforzados que fueron adicionados hasta un 20% con nanosílice geotérmica presentaron una menor probabilidad de corrosión. Lo anterior es atribuido al alto carácter puzolánico que posee la nanosílice geotérmica, lo cual fue monitoreado mediante difracción de rayos X, observando una disminución notable en el hidróxido de calcio. Se observó también una densificación de la matriz en los concretos con adiciones de nanosílice geotérmica sin cloruros. Sin embargo, el curado a altas temperaturas y la adición de cloruros repercutieron negativamente en los procesos de hidratación de los morteros y concretos, desencadenando fenómenos agresivos que disminuyeron su durabilidad, ya que fueron observados altos niveles de corrosión en varillas de refuerzo así como la formación de fases dañinas, como gel de reacción alcali sílice y formación tardía de etringita. A pesar de ello, los resultados obtenidos hacen ver a la nanosílice geotérmica como un material potencialmente apto para su uso en la elaboración de morteros y concretos cuya implementación a nivel industrial contribuirá de manera positiva en la mitigación de las emisiones de CO2 a la atmósfera, así como en la reducción del impacto ambiental que éste genera en las zonas que es desechado.