3 resultados para CORRIENTES ELÉCTRICAS
em Repositorio Academico Digital UANL
Resumo:
La fabricación de los componentes automotrices engloba una gran cantidad de procesos de manufactura los cuales van desde el proceso de fundición del acero, forjados, mecanizados y tratamientos térmicos, entre otros. Estos procesos se llevan a cabo con el objetivo de lograr que el componente a fabricar cumpla con lo especificado y tenga un buen desempeño en su funcionalidad. La gran mayoría de los componentes son fabricados a partir de aceros aleados, aceros al carbono de baja y media aleación los cuales son posteriormente tratados térmicamente para mejorar sus propiedades mecánicas. Uno de los tratamientos térmicos más utilizados es el temple superficial, el cual tiene como objetivo principal endurecer la superficie del componente para mejorar su resistencia a la flexión, resistencia al desgaste, resistencia al impacto, entre otras propiedades mecánicas. La inducción electromagnética, o simplemente "inducción", es un método de calentamiento de materiales eléctricamente conductores tales como metales. Como su nombre implica, el calentamiento por inducción se basa en las corrientes eléctricas que son inducidas internamente en el material a calentar, es decir, la pieza de trabajo. La experimentación realizada durante este trabajo de tesis fue dividida en 2 etapas: • Proceso de temple por inducción actual (Técnica de escaneo). • Proceso de temple por inducción propuesto (Técnica calentamiento estático). Durante la etapa de experimentación del proceso de temple por inducción actual se llevó a cabo la validación de los resultados de temperatura superficial mediante la toma de video de una cámara termografía realizando un comparativo con los resultados de la simulación de calentamiento. Posteriormente se realizó la simulación del proceso de temple y transformación de fase martensita con su respectiva validación mediante corte y evaluación metalúrgica de muestra, además de la comparación de resultados de durezas obtenidos durante el proceso de temple y los resultados obtenidos en la simulación. La segunda etapa del proceso de temple por inducción fue llevada a cabo con la colaboración del personal del laboratorio de aplicaciones de GH Induction. Durante esta etapa se realizaron 2 propuestas de diseño de bobinas y se realizaron las pruebas de simulación así como las validaciones físicas y metalúrgicas. Previo a las pruebas se realizaron cálculos teóricos para establecer los parámetros iniciales del proceso mediante las gráficas de Lozinski. Los resultados obtenidos durante las etapas de este proyecto fueron satisfactorios. En la primer etapa se logró simular en 2D el proceso actual de temple por inducción obteniendo una aproximación cercana al 90% en los resultados de temperaturas, transformación de fase y dureza. Este modelo y los resultados obtenidos fueron utilizados como parámetros de entrada para la segunda etapa. Durante la segunda etapa los resultados obtenidos durante las simulaciones mostraron que el diseño de bobinas 1 no sería efectivo al momento de calentar la zona del diámetro interno, por lo cual se descartó la fabricación de estas bobinas. La propuesta número 2, incluyó el uso de concentradores de flujo magnético, los cuales colaboran a dirigir el campo magnético en zonas específicas. Los resultados obtenidos durante la simulación 3D de la propuesta 2 fueron satisfactorios por lo cual se decidió fabricar las bobinas y llevar a cabo las pruebas físicas. Los resultados finales obtenidos de transformación de fase comparados con las pruebas físicas tiene una aproximación de 90%. En conclusión, fue posible el desarrollo de un modelo para la simulación del proceso de calentamiento por inducción para componentes automotrices con geometría compleja. Como contribución principal esta modelación validó el diseño de bobinas con las cuales se logró obtener una disminución en el tiempo ciclo del proceso del husillo de 36.4% y un ahorro en la energía consumida de 22.3% medida en la unidad de kWsegundo.
Resumo:
Propósito y Método del Estudio: La demanda de baterías recargables ha aumentado de manera significativa cada año durante la última década impulsada por las necesidades vinculadas con el desarrollo tecnológico (portabilidad, alto desempeño de dispositivos electrónicos, vehículos eléctricos). La batería ión-litio es el dispositivo de mayor consumo, está diseñado para el almacenamiento y conversión de energía eléctrica basado en electrodos de intercalación. En la actualidad los esfuerzos están dirigidos a la mejora y/o remplazo de los componentes actuales de las baterías: ánodo, cátodo (LiCoO2) y electrolito, por materiales que tengan más altos rendimientos en términos de energía, potencia, costo, confiabilidad, tiempo de vida y seguridad. En este trabajo de investigación se prepararon y caracterizaron cuatro compuestos Na3V2-xAlx(PO4)2F3 (x= 0, 0.02, 0.05, 0.1) como materiales catódicos para baterías ión-litio. Estos materiales se obtuvieron mediante el método Pechini. La caracterización morfológica y microestructural se llevó a cabo por Microscopia Electrónica de Barrido de Emisión de Campo (FESEM), el análisis textural por Fisisorción de N2 por la técnica BET; la composición química y cristalográfica se determinó por Espectroscopia de Emisión de Plasma de Acoplamiento Inductivo (ICP-OES), Espectroscopia de Energía Dispersiva de Rayos X (EDXS) y Difracción de Rayos X (XRD), mientras que por Espectroscopia de Impedancia Electroquímica (EIS) se realizó la caracterización eléctrica; por último la aplicación de los materiales como cátodos en baterías ión-litio se evaluó mediante pruebas Galvanostáticas de carga/descarga. Contribuciones y Conclusiones: Se establecieron las condiciones de síntesis para los materiales Na3V2-xAlx(PO4)2F3 x= 0, 0.02, 0.05 y 0.1 vía método Pechini. El dopaje de la fase Na3V2-xAlx(PO4)2F3 se llevó a cabo con éxito hasta x=0.1 moles de aluminio, dado que se conservó la estructura cristalina tetragonal del Na3V2(PO4)2F3 (JCPDS 01-089-8485). Los materiales obtenidos tienen una microestructura formada por partículas de forma granular de tamaño nanométrico (40-100nm), esto se atribuye al efecto del carbono residual en la muestra (en promedio 8% en peso) ya que inhibe el crecimiento de partícula, además que permite mejorar el contacto entre las partículas lo que beneficia a la conductividad electrónica del material. Los materiales obtenidos tienen en promedio un tamaño de poro de 20 nm, con un área superficial del orden 30 m2/g. La fase con 0.05 moles de aluminio presentó el mejor resultado bajo las condiciones de estudio. Conjuga dos de las características básicas de una batería, presenta una alta capacidad de carga/descarga (123/101 mAh/g a un voltaje de celda de 4.4 V vs Li) y una buena capacidad de retención (82%), en comparación al material sin dopar (128/63 mAh/g y 49% de retención). Por lo anterior, el dopaje de la fase Na3V2(PO4)2F3 con Al, logró la estabilización de la estructura frente a los procesos de ciclado. Por lo cual es un material prometedor para su aplicación como cátodos en baterías ión-litio o ión-sodio.