5 resultados para Análisi microestructural
em Repositorio Academico Digital UANL
Resumo:
En este proyecto de tesis se presentan los resultados de la carectización microestructural morfológica y composición fisicoquímica de las partículas suspendidas totales (PST) colectadas en la cuidad de Monterrey.
Resumo:
El presente trabajo de investigación tuvo como objetivo principal, el determinar y caracterizar la microestructura de una superaleación Inconel 625 antes y después de pasar por procesos termomecánicos, con el fin de comprender su evolución microestructural y sus fases presentes. Para cumplir este objetivo se propuso realizar una caracterización microestructural antes y después de una serie de trabajos termomecánicos, los cuales se realizaron ensayos mecánicos de compresión en caliente a diferentes temperaturas (900ºC, 950°C, 1000°C, 1050°C) a diferentes velocidades de deformación (0.1 mm/s, 0.01 mm/s), en muestras previamente solubilizadas a 1150°C por 1 hora. Esto con la finalidad de caracterizar el material bajo estas condiciones termomecánicas, esto con el fin de observar la formación de fases y precipitación de carburos, todo esto mediante el uso de técnicas como Difracción de Rayos X, Análisis Térmico, Microscopia Óptica, y Microscopia Electrónica de Barrido.
Resumo:
Los procesos en los que se involucra la deformación plástica en la industria de los metales son usados para la fabricación en masa de productos. Una de las metas mas ambiciosas de la industria es la de validar la teoría de la deformación de los materiales con el objetivo de controlar los factores que afectan el comportamiento del material sometido a deformación para asegurar sus propiedades mecánicas, para implementar los mas eficientes métodos de producción y sobre todo, para obtener productos de alta calidad. Por todo esto, la presente investigación es una aproximación experimental que busca describir el comportamiento de un alambrón de sección circular de aluminio 5154A sometida a deformación en frío hasta obtener una cinta. Las características y propiedades deseadas de dicha cinta incluyen las dimensiones 0.381mm de espesor y 9.54mm de ancho; una resistencia mecánica entre 260-300 MPa y un valor mínimo de deformación de 7.8%. La aplicación final de la cinta será la de blindaje de cables eléctricos. El proceso de laminación se llevó a cabo sobre dos alambrones de diferente diámetro inicial. Se usó un molino dúo en ambos casos. Para el alambrón de 9.5mm de diámetro inicial, se realizaron 9 pases hasta obtener una cinta de 0.38mm de espesor con recocidos parciales intercalados entre los pases de laminación. Para el alambre de 5.12mm de diámetro se realizó una serie de cinco pases para obtener la cinta. El recocido de la cinta final se hizo hasta después del último pase de laminación. Se estudió la velocidad de giro de los molinos durante el proceso de laminación. Esta variable tuvo una influencia casi nula en el comportamiento de deformación aunque al mismo tiempo fue posible determinar un valor máximo sugerido para evitar el agrietamiento del alambre a deformar, esto es, una velocidad de 0.20 m/s. El análisis de la evolución microestructural se realizó por microscopía óptica con la cual se pudo evidenciar el cambio en la morfología de los granos debido a la deformación. Los ensayos de tensión se usaron para determinar las propiedades mecánicas; éstos se hicieron para el conjunto de muestras obtenidas de la laminación tanto del alambrón de 9.5 mm de diámetro como en el de 5.12mm. Las propiedades finales de la cinta dependen principalmente del tiempo de recocido. En menor medida, el orden en que se intercalaron los recocidos parciales, también tuvo afectación en las propiedades finales. La técnica de difracción de electrones retrodispersados se usó para el análisis de la textura del material sometido a diferentes porcentajes de reducción, es decir, 14, 34 y 58 %. Con esta deformación no fue posible determinar si existe una orientación que se pueda considerar preferencial. Sin embargo, fue posible identificar la presencia de las componentes que forman la fibra b, las cuales son las componentes Cúbica, Cobre, Goss, Latón y S. La intensidad de dichas componentes se ve afectada por el grado de deformación.
Resumo:
Propósito y Método del Estudio: La demanda de baterías recargables ha aumentado de manera significativa cada año durante la última década impulsada por las necesidades vinculadas con el desarrollo tecnológico (portabilidad, alto desempeño de dispositivos electrónicos, vehículos eléctricos). La batería ión-litio es el dispositivo de mayor consumo, está diseñado para el almacenamiento y conversión de energía eléctrica basado en electrodos de intercalación. En la actualidad los esfuerzos están dirigidos a la mejora y/o remplazo de los componentes actuales de las baterías: ánodo, cátodo (LiCoO2) y electrolito, por materiales que tengan más altos rendimientos en términos de energía, potencia, costo, confiabilidad, tiempo de vida y seguridad. En este trabajo de investigación se prepararon y caracterizaron cuatro compuestos Na3V2-xAlx(PO4)2F3 (x= 0, 0.02, 0.05, 0.1) como materiales catódicos para baterías ión-litio. Estos materiales se obtuvieron mediante el método Pechini. La caracterización morfológica y microestructural se llevó a cabo por Microscopia Electrónica de Barrido de Emisión de Campo (FESEM), el análisis textural por Fisisorción de N2 por la técnica BET; la composición química y cristalográfica se determinó por Espectroscopia de Emisión de Plasma de Acoplamiento Inductivo (ICP-OES), Espectroscopia de Energía Dispersiva de Rayos X (EDXS) y Difracción de Rayos X (XRD), mientras que por Espectroscopia de Impedancia Electroquímica (EIS) se realizó la caracterización eléctrica; por último la aplicación de los materiales como cátodos en baterías ión-litio se evaluó mediante pruebas Galvanostáticas de carga/descarga. Contribuciones y Conclusiones: Se establecieron las condiciones de síntesis para los materiales Na3V2-xAlx(PO4)2F3 x= 0, 0.02, 0.05 y 0.1 vía método Pechini. El dopaje de la fase Na3V2-xAlx(PO4)2F3 se llevó a cabo con éxito hasta x=0.1 moles de aluminio, dado que se conservó la estructura cristalina tetragonal del Na3V2(PO4)2F3 (JCPDS 01-089-8485). Los materiales obtenidos tienen una microestructura formada por partículas de forma granular de tamaño nanométrico (40-100nm), esto se atribuye al efecto del carbono residual en la muestra (en promedio 8% en peso) ya que inhibe el crecimiento de partícula, además que permite mejorar el contacto entre las partículas lo que beneficia a la conductividad electrónica del material. Los materiales obtenidos tienen en promedio un tamaño de poro de 20 nm, con un área superficial del orden 30 m2/g. La fase con 0.05 moles de aluminio presentó el mejor resultado bajo las condiciones de estudio. Conjuga dos de las características básicas de una batería, presenta una alta capacidad de carga/descarga (123/101 mAh/g a un voltaje de celda de 4.4 V vs Li) y una buena capacidad de retención (82%), en comparación al material sin dopar (128/63 mAh/g y 49% de retención). Por lo anterior, el dopaje de la fase Na3V2(PO4)2F3 con Al, logró la estabilización de la estructura frente a los procesos de ciclado. Por lo cual es un material prometedor para su aplicación como cátodos en baterías ión-litio o ión-sodio.
Resumo:
En la presente investigación se estudiaron los efectos que propicia la incorporación del nanosílice geotérmica con distintas concentraciones de cloruros totales y la temperatura sobre las propiedades mecánicas, fisicoquímicas y de durabilidad, en morteros y concretos elaborados a base de cemento portland. Para ello, se evaluó en varillas embebidas en morteros, el potencial de corrosión, velocidad de corrosión, así como las pérdidas de masa asociadas a los ensayos electroquímicos y por métodos gravimétricos; además, la resistividad, la porosidad total, el pH, la pérdida de agua evaporable, la variación de la longitud (% de expansión/contracción) y la resistencia a la compresión. En concretos fue evaluada la resistencia a la compresión, el seguimiento microestructural y formación de productos de reacción con el tiempo de curado; además, en algunos de ellos se evaluó la profundidad y velocidad de carbonatación. Los resultados demostraron que el es viable el uso del residuo de nanosílice geotérmica bajo ciertas condiciones de curado como sustituto de cemento portland, obteniéndose un mejoramiento en las propiedades mecánicas, fisicoquímicas y de durabilidad en comparación con las obtenidas en concretos de 100% de cemento portland. Se observó un incremento del 22% en la resistencia a la compresión en las muestras que contenían nanosílice geotérmica sin cloruros en comparación de los concretos elaborados con 100% de cemento. Además, los concretos adicionados con 10% de nanosílice geotérmica resultaron ser más resistentes al paso del CO2. También, los morteros reforzados que fueron adicionados hasta un 20% con nanosílice geotérmica presentaron una menor probabilidad de corrosión. Lo anterior es atribuido al alto carácter puzolánico que posee la nanosílice geotérmica, lo cual fue monitoreado mediante difracción de rayos X, observando una disminución notable en el hidróxido de calcio. Se observó también una densificación de la matriz en los concretos con adiciones de nanosílice geotérmica sin cloruros. Sin embargo, el curado a altas temperaturas y la adición de cloruros repercutieron negativamente en los procesos de hidratación de los morteros y concretos, desencadenando fenómenos agresivos que disminuyeron su durabilidad, ya que fueron observados altos niveles de corrosión en varillas de refuerzo así como la formación de fases dañinas, como gel de reacción alcali sílice y formación tardía de etringita. A pesar de ello, los resultados obtenidos hacen ver a la nanosílice geotérmica como un material potencialmente apto para su uso en la elaboración de morteros y concretos cuya implementación a nivel industrial contribuirá de manera positiva en la mitigación de las emisiones de CO2 a la atmósfera, así como en la reducción del impacto ambiental que éste genera en las zonas que es desechado.