2 resultados para stochastic optimization, physics simulation, packing, geometry
em Biblioteca de Teses e Dissertações da USP
Resumo:
A condutividade hidráulica (K) é um dos parâmetros controladores da magnitude da velocidade da água subterrânea, e consequentemente, é um dos mais importantes parâmetros que afetam o fluxo subterrâneo e o transporte de solutos, sendo de suma importância o conhecimento da distribuição de K. Esse trabalho visa estimar valores de condutividade hidráulica em duas áreas distintas, uma no Sistema Aquífero Guarani (SAG) e outra no Sistema Aquífero Bauru (SAB) por meio de três técnicas geoestatísticas: krigagem ordinária, cokrigagem e simulação condicional por bandas rotativas. Para aumentar a base de dados de valores de K, há um tratamento estatístico dos dados conhecidos. O método de interpolação matemática (krigagem ordinária) e o estocástico (simulação condicional por bandas rotativas) são aplicados para estimar os valores de K diretamente, enquanto que os métodos de krigagem ordinária combinada com regressão linear e cokrigagem permitem incorporar valores de capacidade específica (Q/s) como variável secundária. Adicionalmente, a cada método geoestatístico foi aplicada a técnica de desagrupamento por célula para comparar a sua capacidade de melhorar a performance dos métodos, o que pode ser avaliado por meio da validação cruzada. Os resultados dessas abordagens geoestatísticas indicam que os métodos de simulação condicional por bandas rotativas com a técnica de desagrupamento e de krigagem ordinária combinada com regressão linear sem a técnica de desagrupamento são os mais adequados para as áreas do SAG (rho=0.55) e do SAB (rho=0.44), respectivamente. O tratamento estatístico e a técnica de desagrupamento usados nesse trabalho revelaram-se úteis ferramentas auxiliares para os métodos geoestatísticos.
Resumo:
A comercialização de energia elétrica de fontes renováveis, ordinariamente, constitui-se uma atividade em que as operações são estruturadas sob condições de incerteza, por exemplo, em relação ao preço \"spot\" no mercado de curto prazo e a geração de energia dos empreendimentos. Deriva desse fato a busca dos agentes pela formulação de estratégias e utilização de ferramentais para auxiliá-los em suas tomadas de decisão, visando não somente o retorno financeiro, mas também à mitigação dos riscos envolvidos. Análises de investimentos em fontes renováveis compartilham de desafios similares. Na literatura, o estudo da tomada de decisão considerada ótima sob condições de incerteza se dá por meio da aplicação de técnicas de programação estocástica, que viabiliza a modelagem de problemas com variáveis randômicas e a obtenção de soluções racionais, de interesse para o investidor. Esses modelos permitem a incorporação de métricas de risco, como por exemplo, o Conditional Value-at-Risk, a fim de se obter soluções ótimas que ponderem a expectativa de resultado financeiro e o risco associado da operação, onde a aversão ao risco do agente torna-se um condicionante fundamental. O objetivo principal da Tese - sob a ótica dos agentes geradores, consumidores e comercializadores - é: (i) desenvolver e implementar modelos de otimização em programação linear estocástica com métrica CVaR associada, customizados para cada um desses agentes; e (ii) aplicá-los na análise estratégica de operações como forma de apresentar alternativas factíveis à gestão das atividades desses agentes e contribuir com a proposição de um instrumento conceitualmente robusto e amigável ao usuário, para utilização por parte das empresas. Nesse contexto, como antes frisado, dá-se ênfase na análise do risco financeiro dessas operações por meio da aplicação do CVaR e com base na aversão ao risco do agente. Considera-se as fontes renováveis hídrica e eólica como opções de ativos de geração, de forma a estudar o efeito de complementaridade entre fontes distintas e entre sites distintos da mesma fonte, avaliando-se os rebatimentos nas operações.