2 resultados para produtos de oxidação
em Biblioteca de Teses e Dissertações da USP
Resumo:
Apesar de diversos estudos in vitro e em populações indicarem um efeito protetor do β-caroteno em sistemas biológicos, estudos epidemiológicos como o \"The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study\" (ATBC) e o \"The Beta-Carotene and Retinol Efficacy Trial\" (CARET) mostraram um aumento na incidência de câncer pulmonar em indivíduos fumantes suplementados com β-caroteno. Essa ação contraditória tem sido chamada na literatura de \"Paradoxo do β-Caroteno\". Sabe-se que este carotenóide sob altas pressões de oxigênio ou na presença de peróxidos pode sofrer oxidação e levar a formação de compostos como aldeídos, epóxidos, etc, que são capazes de se adicionarem covalentemente ao DNA. Estudos, in vitro e in vivo têm demonstrado a possibilidade de os metabólitos do β-caroteno agirem como agentes pró-carcinogênicos. Estes agentes quando ativados quimicamente podem levar à formação de adutos de DNA. Já se sabe que alguns desses adutos encontramse em níveis aumentados em diversas situações de risco de câncer. Diversos grupos, incluindo o nosso, têm demonstrado a formação de lesões em DNA a partir de aldeídos e epóxidos exógenos ou gerados endogenamente. O presente trabalho mostra que a reação do β-caroteno e dois de seus produtos de oxidação, retinal e β-apo-8\'-carotenal, com 2\'-desoxiguanosina e DNA leva à formação de adutos. Dentre os adutos formados, foi caracterizado o aduto 1,N2eteno-2\'-desoxiguanosina (1 ,N2-εdGuo). Os níveis de outro aduto de DNA, a 8-oxo-7,8-dihidro-2\'-deoxiguanosina (8-oxodGuo), também foram monitoradas para estudo comparativo. A formação dos adutos também foi verificada em fibroblastos normais de pulmão humano (linhagem IMR-90) expostos ao β-caroteno e aos seus produtos de oxidação. Experimentos com ratos suplementados com β-caroteno e expostos à fumaça de cigarro em períodos de 7, 30 e 180 dias, mostraram níveis aumentados de 1,N2-εdGuo nos animais suplementados com o carotenóide comparado ao grupo veículo. Aumento no nível de 8-oxodGuo também foi verificado nos tratamentos de 7 e 180 dias. Um aumento significativo no nível do eteno aduto também foi verificado nos animais suplementados com β-caroteno e expostos à fumaça de cigarro, comparado ao grupo apenas exposto à fumaça após 7 e 180 dias de exposição. Nestes mesmos grupos, o aumento do 8-oxodGuo só foi observado no tratamento por 180 dias. Sabendo que estas lesões são comprovadamente mutagênicas, nossos estudos podem contribuir para o esclarecimento dos mecanismos envolvidos na formação de câncer em fumantes suplementados ou não com β-caroteno.
Resumo:
Na primeira parte do trabalho, foram investigados materiais ativos para eletro-oxidar etanol e acetaldeído seletivos para a rota C2 (Carbono 2) e, também, ativos para eletro-oxidar hidrogênio molecular, visando a aplicação em células a combustível de hidrogênio indireto. Neste tipo de célula, um processador de combustível externo desidrogena o etanol e os produtos desta reação, contendo H2, acetaldeído e, possivelmente, etanol residual, são direcionados para alimentar o ânodo. Neste sentido, o eletrocatalisador anódico pode ser ativo para a eletro-oxidação de etanol residual, bem como acetaldeído, mas este deve catalisar a reação via C2 com o objetivo de evitar a formação de espécies que envenenam a superfície catalítica (CO ou CHx), ou seja, a ligação C-C deve permanecer intacta. Os eletrocatalisadores bimetálicos foram formados por M/Pt/C (onde M = W, Ru ou Sn) e os produtos reacionais foram analisados por DEMS On-line. Os resultados mostraram que Ru/Pt/C e Sn/Pt/C apresentaram maiores taxas de reação global, no entanto, eles não foram seletivos. Por outro lado, W2/Pt3/C foi mais seletivo para a rota C2, dada a não formação de CH4 e CO2. Além disso, este material também foi ativo e estável para a eletro-oxidação de H2, mesmo na presença de acetaldeído, o que o torna um potencial catalisador para aplicação no ânodo de células a combustível de hidrogênio indireto. Na segunda parte do trabalho, o objetivo foi relacionado com o estudo de eletrocatalisadores seletivos para a rota C1 (Carbono 1). A oxidação eletroquímica do etanol e de seus produtos reacionais foram investigados por DEMS on-line em temperatura ambiente e intermediária (245oC). Para temperatura ambiente, utilizou-se solução aquosa de ácido sulfúrico (H2SO4) e, para temperatura intermediária, utilizou-se ácido sólido (CsH2PO4) como eletrólito. Os eletrocatalisadores investigados foram formados por SnOxRuOx-Pt/C e Pt/C. Em temperatura ambiente, os resultados de polarização potenciodinâmica mostraram uma maior atividade eletrocatalítica para o material SnOxRuOx-Pt/C, com eficiência de corrente para formação de CO2 de 15,6% contra 15,2% para Pt/C, sob condições estagnantes, sem controle por transporte de massa. O stripping de resíduos reacionais, após a eletro-oxidação de etanol bulk, sob condições de fluxo, mostraram o acúmulo de espécies com 1 átomo de carbono (CO e CHx) que causam o bloqueio dos sítios ativos e são oxidadas eletroquimicamente somente em mais altos potenciais (ca. 1,0 V). Por outro lado, as curvas de polarização a 245oC mostraram maiores valores de eficiências de correntes para formação de CO2 (45% para Pt/C em ambos potenciais 0,5 V e 0,8 V contra 36% e 50% para SnOxRuOx-Pt/C em 0,5 V e 0,8 V respectivamente) quando comparado com os valores obtidos em temperatura ambiente, mas com atividades similares para SnOxRuOx-Pt/C e Pt/C. Para ambos os eletrocatalisadores, os estudos de espectrometria de massas a 245oC evidenciaram que as rotas eletroquímicas ocorrem em paralelo com rotas puramente químicas, envolvendo catálise heterogênea, de decomposição do etanol, produzindo H2 e CO2 como produtos majoritários.