1 resultado para power series distribution
em Biblioteca de Teses e Dissertações da USP
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Aquatic Commons (21)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (22)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (11)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Boston University Digital Common (4)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CaltechTHESIS (11)
- Cambridge University Engineering Department Publications Database (34)
- CentAUR: Central Archive University of Reading - UK (46)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (59)
- Cochin University of Science & Technology (CUSAT), India (11)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (3)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (12)
- Indian Institute of Science - Bangalore - Índia (83)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (37)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (20)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (18)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (83)
- Queensland University of Technology - ePrints Archive (206)
- Repositorio Academico Digital UANL (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (61)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (11)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (11)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (12)
- University of Michigan (8)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (10)
- University of Washington (3)
- WestminsterResearch - UK (2)
Resumo:
This research presents the development and implementation of fault location algorithms in power distribution networks with distributed generation units installed along their feeders. The proposed algorithms are capable of locating the fault based on voltage and current signals recorded by intelligent electronic devices installed at the end of the feeder sections, information to compute the loads connected to these feeders and their electric characteristics, and the operating status of the network. In addition, this work presents the study of analytical models of distributed generation and load technologies that could contribute to the performance of the proposed fault location algorithms. The validation of the algorithms was based on computer simulations using network models implemented in ATP, whereas the algorithms were implemented in MATLAB.