4 resultados para partial least square (PLS)

em Biblioteca de Teses e Dissertações da USP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diferentes abordagens teóricas têm sido utilizadas em estudos de sistemas biomoleculares com o objetivo de contribuir com o tratamento de diversas doenças. Para a dor neuropática, por exemplo, o estudo de compostos que interagem com o receptor sigma-1 (Sig-1R) pode elucidar os principais fatores associados à atividade biológica dos mesmos. Nesse propósito, estudos de Relações Quantitativas Estrutura-Atividade (QSAR) utilizando os métodos de regressão por Mínimos Quadrados Parciais (PLS) e Rede Neural Artificial (ANN) foram aplicados a 64 antagonistas do Sig-1R pertencentes à classe de 1-arilpirazóis. Modelos PLS e ANN foram utilizados com o objetivo de descrever comportamentos lineares e não lineares, respectivamente, entre um conjunto de descritores e a atividade biológica dos compostos selecionados. O modelo PLS foi obtido com 51 compostos no conjunto treinamento e 13 compostos no conjunto teste (r² = 0,768, q² = 0,684 e r²teste = 0,785). Testes de leave-N-out, randomização da atividade biológica e detecção de outliers confirmaram a robustez e estabilidade dos modelos e mostraram que os mesmos não foram obtidos por correlações ao acaso. Modelos também foram gerados a partir da Rede Neural Artificial Perceptron de Multicamadas (MLP-ANN), sendo que a arquitetura 6-12-1, treinada com as funções de transferência tansig-tansig, apresentou a melhor resposta para a predição da atividade biológica dos compostos (r²treinamento = 0,891, r²validação = 0,852 e r²teste = 0,793). Outra abordagem foi utilizada para simular o ambiente de membranas sinápticas utilizando bicamadas lipídicas compostas por POPC, DOPE, POPS e colesterol. Os estudos de dinâmica molecular desenvolvidos mostraram que altas concentrações de colesterol induzem redução da área por lipídeo e difusão lateral e aumento na espessura da membrana e nos valores de parâmetro de ordem causados pelo ordenamento das cadeias acil dos fosfolipídeos. As bicamadas lipídicas obtidas podem ser usadas para simular interações entre lipídeos e pequenas moléculas ou proteínas contribuindo para as pesquisas associadas a doenças como Alzheimer e Parkinson. As abordagens usadas nessa tese são essenciais para o desenvolvimento de novas pesquisas em Química Medicinal Computacional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o escopo de fornecer subsídios para compreender como o processo de colaboração científica ocorre e se desenvolve em uma instituição de pesquisas, particularmente o IPEN, o trabalho utilizou duas abordagens metodológicas. A primeira utilizou a técnica de análise de redes sociais (ARS) para mapear as redes de colaboração científica em P&D do IPEN. Os dados utilizados na ARS foram extraídos da base de dados digitais de publicações técnico-científicas do IPEN, com o auxílio de um programa computacional, e basearam-se em coautoria compreendendo o período de 2001 a 2010. Esses dados foram agrupados em intervalos consecutivos de dois anos gerando cinco redes bienais. Essa primeira abordagem revelou várias características estruturais relacionadas às redes de colaboração, destacando-se os autores mais proeminentes, distribuição dos componentes, densidade, boundary spanners e aspectos relacionados à distância e agrupamento para definir um estado de redes mundo pequeno (small world). A segunda utilizou o método dos mínimos quadrados parciais, uma variante da técnica de modelagem por equações estruturais, para avaliar e testar um modelo conceitual, apoiado em fatores pessoais, sociais, culturais e circunstanciais, para identificar aqueles que melhor explicam a propensão de um autor do IPEN em estabelecer vínculos de colaboração em ambientes de P&D. A partir do modelo consolidado, avaliou-se o quanto ele explica a posição estrutural que um autor ocupa na rede com base em indicadores de ARS. Nesta segunda parte, os dados foram coletados por meio de uma pesquisa de levantamento com a utilização de um questionário. Os resultados mostraram que o modelo explica aproximadamente 41% da propensão de um autor do IPEN em colaborar com outros autores e em relação à posição estrutural de um autor na rede o poder de explicação variou entre 3% e 3,6%. Outros resultados mostraram que a colaboração entre autores do IPEN tem uma correlação positiva com intensidade moderada com a produtividade, da mesma forma que, os autores mais centrais na rede tendem a ampliar a sua visibilidade. Por fim, vários outros indicadores estatísticos bibliométricos referentes à rede de colaboração em P&D do IPEN foram determinados e revelados, como, a média de autores por publicação, média de publicações por autores do IPEN, total de publicações, total de autores e não autores do IPEN, entre outros. Com isso, esse trabalho fornece uma contribuição teórica e empírica aos estudos relacionados à colaboração científica e ao processo de transferência e preservação de conhecimento, assim como, vários subsídios que contribuem para o contexto de tomada de decisão em ambientes de P&D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A otimização de sistemas do tipo Ti-Si-X requer que os sistemas binários estejam constantemente atualizados. O sistema Ti-Si foi investigado experimentalmente desde a década de 50 e poucos estudos usaram os dados experimentais para calcular o diagrama de fases Ti-Si usando modelamento termodinâmico. A otimização mais recente do sistema Ti-Si foi realizada em 1998, descrevendo a fase Ti5Si3 como um intermetálico não estequiométrico contendo três sub-redes e mostrando a presença da fase intermetálica estequiométrica Ti3Si. Dada a recente disputa sobre a cinética de precipitação e a estabilidade das fases Ti3Si e Ti5Si3 nos sistemas Ti-Si e Ti-Si-X, o canto rico em titânio do sistema Ti-Si (estável e metaestável) foi otimizado no presente trabalho. Os limites de estabilidade de fases, os valores dos erros pelo método dos mínimos quadrados do procedimento de otimização e os desvios padrões relativos das variáveis calculadas foram discutidos para inspirar a realização de mais trabalhos experimentais para investigar as reações eutetóides estáveis e/ou metaestáveis, ?->? + Ti3Si e ?->? + + Ti5Si3; e para melhorar cada vez mais as otimizações termodinâmicas do diagrama de fases do sistema Ti-Si.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing economic competition drives the industry to implement tools that improve their processes efficiencies. The process automation is one of these tools, and the Real Time Optimization (RTO) is an automation methodology that considers economic aspects to update the process control in accordance with market prices and disturbances. Basically, RTO uses a steady-state phenomenological model to predict the process behavior, and then, optimizes an economic objective function subject to this model. Although largely implemented in industry, there is not a general agreement about the benefits of implementing RTO due to some limitations discussed in the present work: structural plant/model mismatch, identifiability issues and low frequency of set points update. Some alternative RTO approaches have been proposed in literature to handle the problem of structural plant/model mismatch. However, there is not a sensible comparison evaluating the scope and limitations of these RTO approaches under different aspects. For this reason, the classical two-step method is compared to more recently derivative-based methods (Modifier Adaptation, Integrated System Optimization and Parameter estimation, and Sufficient Conditions of Feasibility and Optimality) using a Monte Carlo methodology. The results of this comparison show that the classical RTO method is consistent, providing a model flexible enough to represent the process topology, a parameter estimation method appropriate to handle measurement noise characteristics and a method to improve the sample information quality. At each iteration, the RTO methodology updates some key parameter of the model, where it is possible to observe identifiability issues caused by lack of measurements and measurement noise, resulting in bad prediction ability. Therefore, four different parameter estimation approaches (Rotational Discrimination, Automatic Selection and Parameter estimation, Reparametrization via Differential Geometry and classical nonlinear Least Square) are evaluated with respect to their prediction accuracy, robustness and speed. The results show that the Rotational Discrimination method is the most suitable to be implemented in a RTO framework, since it requires less a priori information, it is simple to be implemented and avoid the overfitting caused by the Least Square method. The third RTO drawback discussed in the present thesis is the low frequency of set points update, this problem increases the period in which the process operates at suboptimum conditions. An alternative to handle this problem is proposed in this thesis, by integrating the classic RTO and Self-Optimizing control (SOC) using a new Model Predictive Control strategy. The new approach demonstrates that it is possible to reduce the problem of low frequency of set points updates, improving the economic performance. Finally, the practical aspects of the RTO implementation are carried out in an industrial case study, a Vapor Recompression Distillation (VRD) process located in Paulínea refinery from Petrobras. The conclusions of this study suggest that the model parameters are successfully estimated by the Rotational Discrimination method; the RTO is able to improve the process profit in about 3%, equivalent to 2 million dollars per year; and the integration of SOC and RTO may be an interesting control alternative for the VRD process.