2 resultados para medical physics
em Biblioteca de Teses e Dissertações da USP
Resumo:
Desde o seu desenvolvimento na década de 1970 a tomografia computadorizada (TC) passou por grandes mudanças tecnológicas, tornando-se uma importante ferramenta diagnóstica para a medicina. Consequentemente o papel da TC em diagnóstico por imagem expandiu-se rapidamente, principalmente devido a melhorias na qualidade da imagem e tempo de aquisição. A dose de radiação recebida por pacientes devido a tais procedimentos vem ganhando atenção, levando a comunidade científica e os fabricantes a trabalharem juntos em direção a determinação e otimização de doses. Nas últimas décadas muitas metodologias para dosimetria em pacientes têm sido propostas, baseadas especialmente em cálculos utilizando a técnica Monte Carlo ou medições experimentais com objetos simuladores e dosímetros. A possibilidade de medições in vivo também está sendo investigada. Atualmente as principais técnicas para a otimização da dose incluem redução e/ou modulação da corrente anódica. O presente trabalho propõe uma metodologia experimental para estimativa de doses absorvidas pelos pulmões devido a protocolos clínicos de TC, usando um objeto simulador antropomórfico adulto e dosímetros termoluminescentes de Fluoreto de Lítio (LiF). Sete protocolos clínicos diferentes foram selecionados, com base em sua relevância com respeito à otimização de dose e frequência na rotina clínica de dois hospitais de grande porte: Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InRad) e Instituto do Câncer do Estado de São Paulo Octávio Frias de Oliveira (ICESP). Quatro protocolos de otimização de dose foram analisados: Auto mA, Auto + Smart mA, Baixa Dose (BD) e Ultra Baixa Dose (UBD). Os dois primeiros protocolos supracitados buscam redução de dose por meio de modulação da corrente anódica, enquanto os protocolos BD e UBD propõem a redução do valor da corrente anódica, mantendo-a constante. Os protocolos BD e UBD proporcionaram redução de dose de 72,7(8) % e 91(1) %, respectivamente; 16,8(1,3) % e 35,0(1,2) % de redução de dose foram obtidas com os protocolos Auto mA e Auto + Smart mA, respectivamente. As estimativas de dose para os protocolos analisados neste estudo são compatíveis com estudos similares publicados na literatura, demonstrando a eficiência da metodologia para o cálculo de doses absorvidas no pulmão. Sua aplicabilidade pode ser estendida a diferentes órgãos, diferentes protocolos de CT e diferentes tipos de objetos simuladores antropomórficos (pediátricos, por exemplo). Por fim, a comparação entre os valores de doses estimadas para os pulmões e valores de estimativas de doses dependentes do tamanho (Size Specific Dose Estimates SSDE) demonstrou dependência linear entre as duas grandezas. Resultados de estudos similares exibiram comportamentos similares para doses no reto, sugerindo que doses absorvidas pelos uma órgãos podem ser linearmente dependente dos valores de SSDE, com coeficientes lineares específicos para cada órgão. Uma investigação mais aprofundada sobre doses em órgãos é necessária para avaliar essa hipótese.
Resumo:
No último século, houve grande avanço no entendimento das interações das radiações com a matéria. Essa compreensão se faz necessária para diversas aplicações, entre elas o uso de raios X no diagnóstico por imagens. Neste caso, imagens são formadas pelo contraste resultante da diferença na atenuação dos raios X pelos diferentes tecidos do corpo. Entretanto, algumas das interações dos raios X com a matéria podem levar à redução da qualidade destas imagens, como é o caso dos fenômenos de espalhamento. Muitas abordagens foram propostas para estimar a distribuição espectral de fótons espalhados por uma barreira, ou seja, como no caso de um feixe de campo largo, ao atingir um plano detector, tais como modelos que utilizam métodos de Monte Carlo e modelos que utilizam aproximações analíticas. Supondo-se um espectro de um feixe primário que não interage com nenhum objeto após sua emissão pelo tubo de raios X, este espectro é, essencialmente representado pelos modelos propostos anteriormente. Contudo, considerando-se um feixe largo de radiação X, interagindo com um objeto, a radiação a ser detectada por um espectrômetro, passa a ser composta pelo feixe primário, atenuado pelo material adicionado, e uma fração de radiação espalhada. A soma destas duas contribuições passa a compor o feixe resultante. Esta soma do feixe primário atenuado, com o feixe de radiação espalhada, é o que se mede em um detector real na condição de feixe largo. O modelo proposto neste trabalho visa calcular o espectro de um tubo de raios X, em situação de feixe largo, o mais fidedigno possível ao que se medem em condições reais. Neste trabalho se propõe a discretização do volume de interação em pequenos elementos de volume, nos quais se calcula o espalhamento Compton, fazendo uso de um espectro de fótons gerado pelo Modelo de TBC, a equação de Klein-Nishina e considerações geométricas. Por fim, o espectro de fótons espalhados em cada elemento de volume é somado ao espalhamento dos demais elementos de volume, resultando no espectro total espalhado. O modelo proposto foi implementado em ambiente computacional MATLAB® e comparado com medições experimentais para sua validação. O modelo proposto foi capaz de produzir espectros espalhados em diferentes condições, apresentando boa conformidade com os valores medidos, tanto em termos quantitativos, nas quais a diferença entre kerma no ar calculado e kerma no ar medido é menor que 10%, quanto qualitativos, com fatores de mérito superiores a 90%.