2 resultados para mean-variance portfolio optimization
em Biblioteca de Teses e Dissertações da USP
Resumo:
Neste trabalho, deriva-se uma política de escolha ótima baseada na análise de média-variância para o Erro de Rastreamento no cenário Multi-período - ERM -. Referindo-se ao ERM como a diferença entre o capital acumulado pela carteira escolhida e o acumulado pela carteira de um benchmark. Assim, foi aplicada a metodologia abordada por Li-Ng em [24] para a solução analítica, obtendo-se dessa maneira uma generalização do caso uniperíodo introduzido por Roll em [38]. Em seguida, selecionou-se um portfólio do mercado de ações brasileiro baseado no fator de orrelação, e adotou-se como benchmark o índice da bolsa de valores do estado de São Paulo IBOVESPA, além da taxa básica de juros SELIC como ativo de renda fixa. Dois casos foram abordados: carteira composta somente de ativos de risco, caso I, e carteira com um ativo sem risco indexado à SELIC - e ativos do caso I (caso II).
Resumo:
Este trabalho apresenta uma nova metodologia para otimizar carteiras de ativos financeiros. A metodologia proposta, baseada em interpoladores universais tais quais as Redes Neurais Artificiais e a Krigagem, permite aproximar a superfície de risco e consequentemente a solução do problema de otimização associado a ela de forma generalizada e aplicável a qualquer medida de risco disponível na literatura. Além disto, a metodologia sugerida permite que sejam relaxadas hipóteses restritivas inerentes às metodologias existentes, simplificando o problema de otimização e permitindo que sejam estimados os erros na aproximação da superfície de risco. Ilustrativamente, aplica-se a metodologia proposta ao problema de composição de carteiras com a Variância (controle), o Valor-em-Risco (VaR) e o Valor-em-Risco Condicional (CVaR) como funções objetivo. Os resultados são comparados àqueles obtidos pelos modelos de Markowitz e Rockafellar, respectivamente.