1 resultado para hierarchical porous media

em Biblioteca de Teses e Dissertações da USP


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A necessidade de obter solução de grandes sistemas lineares resultantes de processos de discretização de equações diferenciais parciais provenientes da modelagem de diferentes fenômenos físicos conduz à busca de técnicas numéricas escaláveis. Métodos multigrid são classificados como algoritmos escaláveis.Um estimador de erros deve estar associado à solução numérica do problema discreto de modo a propiciar a adequada avaliação da solução obtida pelo processo de aproximação. Nesse contexto, a presente tese caracteriza-se pela proposta de reutilização das estruturas matriciais hierárquicas de operadores de transferência e restrição dos métodos multigrid algébricos para acelerar o tempo de solução dos sistemas lineares associados à equação do transporte de contaminantes em meio poroso saturado. Adicionalmente, caracteriza-se pela implementação das estimativas residuais para os problemas que envolvem dados constantes ou não constantes, os regimes de pequena ou grande advecção e pela proposta de utilização das estimativas residuais associadas ao termo de fonte e à condição inicial para construir procedimentos adaptativos para os dados do problema. O desenvolvimento dos códigos do método de elementos finitos, do estimador residual e dos procedimentos adaptativos foram baseados no projeto FEniCS, utilizando a linguagem de programação PYTHONR e desenvolvidos na plataforma Eclipse. A implementação dos métodos multigrid algébricos com reutilização considera a biblioteca PyAMG. Baseado na reutilização das estruturas hierárquicas, os métodos multigrid com reutilização com parâmetro fixo e automática são propostos, e esses conceitos são estendidos para os métodos iterativos não-estacionários tais como GMRES e BICGSTAB. Os resultados numéricos mostraram que o estimador residual captura o comportamento do erro real da solução numérica, e fornece algoritmos adaptativos para os dados cuja malha retornada produz uma solução numérica similar à uma malha uniforme com mais elementos. Adicionalmente, os métodos com reutilização são mais rápidos que os métodos que não empregam o processo de reutilização de estruturas. Além disso, a eficiência dos métodos com reutilização também pode ser observada na solução do problema auxiliar, o qual é necessário para obtenção das estimativas residuais para o regime de grande advecção. Esses resultados englobam tanto os métodos multigrid algébricos do tipo SA quanto os métodos pré-condicionados por métodos multigrid algébrico SA, e envolvem o transporte de contaminantes em regime de pequena e grande advecção, malhas estruturadas e não estruturadas, problemas bidimensionais, problemas tridimensionais e domínios com diferentes escalas.