1 resultado para early detection of cancer
em Biblioteca de Teses e Dissertações da USP
Resumo:
According to the last global burden of disease published by the World Health Organization, tumors were the third leading cause of death worldwide in 2004. Among the different types of tumors, colorectal cancer ranks as the fourth most lethal. To date, tumor diagnosis is based mainly on the identification of morphological changes in tissues. Considering that these changes appears after many biochemical reactions, the development of vibrational techniques may contribute to the early detection of tumors, since they are able to detect such reactions. The present study aimed to develop a methodology based on infrared microspectroscopy to characterize colon samples, providing complementary information to the pathologist and facilitating the early diagnosis of tumors. The study groups were composed by human colon samples obtained from paraffin-embedded biopsies. The groups are divided in normal (n=20), inflammation (n=17) and tumor (n=18). Two adjacent slices were acquired from each block. The first one was subjected to chemical dewaxing and H&E staining. The infrared imaging was performed on the second slice, which was not dewaxed or stained. A computational preprocessing methodology was employed to identify the paraffin in the images and to perform spectral baseline correction. Such methodology was adapted to include two types of spectral quality control. Afterwards the preprocessing step, spectra belonging to the same image were analyzed and grouped according to their biochemical similarities. One pathologist associated each obtained group with some histological structure based on the H&E stained slice. Such analysis highlighted the biochemical differences between the three studied groups. Results showed that severe inflammation presents biochemical features similar to the tumors ones, indicating that tumors can develop from inflammatory process. A spectral database was constructed containing the biochemical information identified in the previous step. Spectra obtained from new samples were confronted with the database information, leading to their classification into one of the three groups: normal, inflammation or tumor. Internal and external validation were performed based on the classification sensitivity, specificity and accuracy. Comparison between the classification results and H&E stained sections revealed some discrepancies. Some regions histologically normal were identified as inflammation by the classification algorithm. Similarly, some regions presenting inflammatory lesions in the stained section were classified into the tumor group. Such differences were considered as misclassification, but they may actually evidence that biochemical changes are in course in the analyzed sample. In the latter case, the method developed throughout this thesis would have proved able to identify early stages of inflammatory and tumor lesions. It is necessary to perform additional experiments to elucidate this discrepancy between the classification results and the morphological features. One solution would be the use of immunohistochemistry techniques with specific markers for tumor and inflammation. Another option includes the recovering of the medical records of patients who participated in this study in order to check, in later times to the biopsy collection, whether they actually developed the lesions supposedly detected in this research.