3 resultados para digital performance
em Biblioteca de Teses e Dissertações da USP
Resumo:
ALICE is one of four major experiments of particle accelerator LHC installed in the European laboratory CERN. The management committee of the LHC accelerator has just approved a program update for this experiment. Among the upgrades planned for the coming years of the ALICE experiment is to improve the resolution and tracking efficiency maintaining the excellent particles identification ability, and to increase the read-out event rate to 100 KHz. In order to achieve this, it is necessary to update the Time Projection Chamber detector (TPC) and Muon tracking (MCH) detector modifying the read-out electronics, which is not suitable for this migration. To overcome this limitation the design, fabrication and experimental test of new ASIC named SAMPA has been proposed . This ASIC will support both positive and negative polarities, with 32 channels per chip and continuous data readout with smaller power consumption than the previous versions. This work aims to design, fabrication and experimental test of a readout front-end in 130nm CMOS technology with configurable polarity (positive/negative), peaking time and sensitivity. The new SAMPA ASIC can be used in both chambers (TPC and MCH). The proposed front-end is composed of a Charge Sensitive Amplifier (CSA) and a Semi-Gaussian shaper. In order to obtain an ASIC integrating 32 channels per chip, the design of the proposed front-end requires small area and low power consumption, but at the same time requires low noise. In this sense, a new Noise and PSRR (Power Supply Rejection Ratio) improvement technique for the CSA design without power and area impact is proposed in this work. The analysis and equations of the proposed circuit are presented which were verified by electrical simulations and experimental test of a produced chip with 5 channels of the designed front-end. The measured equivalent noise charge was <550e for 30mV/fC of sensitivity at a input capacitance of 18.5pF. The total core area of the front-end was 2300?m × 150?m, and the measured total power consumption was 9.1mW per channel.
Resumo:
O mercado consumidor passou por diversas transformações ao longo do tempo devido principalmente à evolução tecnológica. A evolução tecnológica proporcionou ao consumidor a possibilidade de escolher por produtos e marcas, e permite a oportunidade de colaborar e influenciar a opinião de outros consumidores através do compartilhamento de experiências, principalmente através da utilização de plataformas digitais. O CRM (gerenciamento do relacionamento com o consumidor) é a forma utilizada pelas empresas para conhecerem o consumidor e criar um relacionamento satisfatório entre empresa e consumidor. Esse relacionamento tem o intuito de satisfazer e fidelizar o consumidor, evitando que ele deixe de consumir a marca e evitando que ele influencie negativamente outros consumidores. O e-CRM é o gerenciamento eletrônico do relacionamento com o consumidor, que possui todas as tradicionais características do CRM, porém com o incremento do ambiente digital. O ambiente digital diminuiu a distância entre pessoas e empresas e se tornou um meio colaborativo de baixo custo de interação com o consumidor. Por outro lado, este é um meio onde o consumidor deixa de ser passivo e se torna ativo, o que o torna capaz de influenciar não só um pequeno grupo de amigos, mas toda uma rede de consumidores. A digital analytics é a medição, coleta, análise e elaboração de relatórios de dados digitais para os propósitos de entendimento e otimização da performance em negócios. A utilização de dados digitais auxilia no desenvolvimento do e-CRM através da compreensão do comportamento do consumidor em um ambiente onde o consumidor é ativo. O ambiente digital permite um conhecimento mais detalhado dos consumidores, baseado não somente nos hábitos de compra, mas também nos interesses e interações. Este estudo tem como objetivo principal compreender como as empresas aplicam os conceitos do e-CRM em suas estratégias de negócios, compreendendo de que forma a digital analytics contribui para o desenvolvimento do e-CRM, e compreendendo como os fatores críticos de sucesso (humano, tecnológico e estratégico) impactam na implantação e desenvolvimento do e-CRM. Quatro empresas de diferentes segmentos foram estudadas através da aplicação de estudo de caso. As empresas buscam cada vez mais explorar as estratégias de e-CRM no ambiente digital, porém existem limitações identificadas devido à captação, armazenamento e análise de informações multicanais, principalmente considerando os canais digitais. Outros fatores como o apoio da alta direção e a compreensão de funcionários para lidar com estratégias focadas no consumidor único também foram identificados neste estudo. O estudo foi capaz de identificar as informações mais relevantes para a geração de estratégias de gerenciamento eletrônico do relacionamento com o consumidor e identificou os aspectos mais relevantes dos fatores críticos de sucesso.
Resumo:
O presente trabalho apresenta uma alternativa ao processo de classificação do defeito da segregação central em amostras de aço, utilizando as imagens digitais que são geradas durante o ensaio de Baumann. O algoritmo proposto tem como objetivo agregar as técnicas de processamento digital de imagens e o conhecimento dos especialistas sobre o defeito da segregação central, visando a classificação do defeito de referência. O algoritmo implementado inclui a identificação e a segmentação da linha segregada por meio da aplicação da transformada de Hough e limiar adaptativo. Adicionalmente, o algoritmo apresenta uma proposta para o mapeamento dos atributos da segregação central nos diferentes graus de severidade do defeito, em função dos critérios de continuidade e intensidade. O mapeamento foi realizado por meio da análise das características individuais, como comprimento, largura e área, dos elementos segmentados que compõem a linha segregada. A avaliação do desempenho do algoritmo foi realizada em dois momentos específicos, de acordo com sua fase de implementação. Para a realização da avaliação, foram analisadas 255 imagens de amostras reais, oriundas de duas usinas siderúrgicas, distribuídas nos diferentes graus de severidade. Os resultados da primeira fase de implementação mostram que a identificação da linha segregada apresenta acurácia de 93%. As classificações oriundas do mapeamento realizado para as classes de criticidade do defeito, na segunda fase de implementação, apresentam acurácia de 92% para o critério de continuidade e 68% para o critério de intensidade.