3 resultados para classificação de imagens
em Biblioteca de Teses e Dissertações da USP
Resumo:
Uma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente.
Resumo:
O presente trabalho apresenta uma alternativa ao processo de classificação do defeito da segregação central em amostras de aço, utilizando as imagens digitais que são geradas durante o ensaio de Baumann. O algoritmo proposto tem como objetivo agregar as técnicas de processamento digital de imagens e o conhecimento dos especialistas sobre o defeito da segregação central, visando a classificação do defeito de referência. O algoritmo implementado inclui a identificação e a segmentação da linha segregada por meio da aplicação da transformada de Hough e limiar adaptativo. Adicionalmente, o algoritmo apresenta uma proposta para o mapeamento dos atributos da segregação central nos diferentes graus de severidade do defeito, em função dos critérios de continuidade e intensidade. O mapeamento foi realizado por meio da análise das características individuais, como comprimento, largura e área, dos elementos segmentados que compõem a linha segregada. A avaliação do desempenho do algoritmo foi realizada em dois momentos específicos, de acordo com sua fase de implementação. Para a realização da avaliação, foram analisadas 255 imagens de amostras reais, oriundas de duas usinas siderúrgicas, distribuídas nos diferentes graus de severidade. Os resultados da primeira fase de implementação mostram que a identificação da linha segregada apresenta acurácia de 93%. As classificações oriundas do mapeamento realizado para as classes de criticidade do defeito, na segunda fase de implementação, apresentam acurácia de 92% para o critério de continuidade e 68% para o critério de intensidade.
Resumo:
O escoamento bifásico de gás-líquido é encontrado em muitos circuitos fechados que utilizam circulação natural para fins de resfriamento. O fenômeno da circulação natural é importante nos recentes projetos de centrais nucleares para a remoção de calor. O circuito de circulação natural (Circuito de Circulação Natural - CCN), instalado no Instituto de Pesquisas Energéticas e Nucleares, IPEN / CNEN, é um circuito experimento concebido para fornecer dados termo-hidráulicos relacionados com escoamento monofásico ou bifásico em condições de circulação natural. A estimativa de transferência de calor tem sido melhorada com base em modelos que requerem uma previsão precisa de transições de padrão de escoamento. Este trabalho apresenta testes experimentais desenvolvidos no CCN para a visualização dos fenômenos de instabilidade em ciclos de circulação natural básica e classificar os padrões de escoamento bifásico associados aos transientes e instabilidades estáticas de escoamento. As imagens são comparadas e agrupadas utilizando mapas auto-organizáveis de Kohonen (SOM), aplicados em diferentes características da imagem digital. Coeficientes da Transformada Discreta de Cossenos de Quadro Completo (FFDCT) foram utilizados como entrada para a tarefa de classificação, levando a bons resultados. Os protótipos de FFDCT obtidos podem ser associados a cada padrão de escoamento possibilitando uma melhor compreensão da instabilidade observada. Uma metodologia sistemática foi utilizada para verificar a robustez do método.