3 resultados para Weed chemical control
em Biblioteca de Teses e Dissertações da USP
Resumo:
O glyphosate é o principal herbicida utilizado no manejo de plantas daninhas na agricultura, aplicado em alguns sistemas de forma repetitiva ao longo de cada ano. Esta prática selecionou biótipos resistentes de espécies de plantas daninhas, sendo o capim-amargoso (Digitaria insularis) selecionado no Brasil. Portanto, se tornam necessários estudos para entender, manejar e reduzir a infestação do capim-amargoso resistente ao glyphosate. Dessa forma, esta pesquisa foi desenvolvida com os objetivos de: (i) mapear áreas do Brasil com possíveis infestações de capim-amargoso resistente ao glyphosate; (ii) avaliar alternativas químicas de seu manejo; (iii) elucidar os mecanismos de resistência ao glyphosate e; (iv) avaliar a herança genética dos genes que conferem resistência ao glyphosate. Para o desenvolvimento dos experimentos foram coletadas sementes de biótipos potencialmente resistentes de diversas regiões do Brasil onde ocorreram falhas de controle de D. insularis após a aplicação de glyphosate. Na primeira etapa da pesquisa foram realizados experimentos para determinação de uma dose discriminatória de triagementre as populações resistentes e suscetíveis ao glyphosate, através de curvas de dose-resposta, para identificar a resistência ao Glyphosate, sendo que estes dados foram utilizados para mapear a ocorrência de biótipos resistentes em algumas regiões do país. Na segunda etapa foi conduzido um experimento em casa-de-vegetação visando encontrar herbicidas alternativos ao Glyphosate para controle do capim-amargoso, utilizando herbicidas recomendados para as culturas do milho e algodão, tanto em condições de aplicação de pré como em pós-emergência da planta daninha. Na terceira etapa foram realizados ensaios para determinar a existência de absorção e translocação diferencial do glyphosate em biótipos suscetíveis e resistentes, juntamente com a análise molecular para comparar a região 106 do gene que codifica a EPSPs nestes biótipos. Por fim um estudo de polinização cruzada foi conduzido para avaliar se genes de resistência ao glyphosate são transferidos para a geração seguinte após inflorescências de biótipos suscetíveis serem acondicionadas com as de biótipos resistentes, submetendo a geração seguinte a experimentos de curva de dose-resposta com o glyphosate. Através do modelo de curva dose-resposta do programa estatístico R, determinou-se a dose de 960 g e.a ha-1, como a dose utilizada para triagem dos biótipos oriundos de diferentes regiões do Brasil. Com isto foram gerados mapas indicando a presença ou ausência de resistência ao herbicida, sendo que as região oeste do Paraná e sul do Mato Grosso do Sul apresentam maior número de localidades com a presença de biótipos resistentes. As alternativas de controle viáveis como pós-emergentes no estádio de um a dois perfilhos, foram os herbicidas Nicosulfuron, Imazapic + Imazapyr, Atrazine, Haloxifop-methyl e Tepraloxydim. Na pré-emergência do capim-amargoso os herbicidas Atrazine, Isoxaflutole, S-metolachlor, Clomazone, Diuron e Flumioxazin se apresentaram como eficazes para o controle desta espécie. Os resultados do experimento de absorção, translocação e comparação da região 106 não mostraram diferenças entre os biótipos resistente e suscetível. O experimento sobre cruzamento entre biótipos resistente e suscetível determinou a espécie D. insularis como autógama e sem transferência de genes que causam a resistência ao glyphosate.
Resumo:
Tomatoes are among the most cultivated and used vegetables in the world. They are very succeptible to post harvest losses due to high perishability, therefore the use of postharvest treatments may contribute to conservation of this fruit, however the treatments might affect significantly physico-chemical, sensory and nutritional characteristics of tomatoes. Given the perishability of tomato and the economic importance of small tomato fruits, the purpose of the present study was to determine the effect of gamma radiation, carnauba coating and 1-MCP treatments on tomato fruit quality during storage. The study may be divided into two parts. In the first, mini tomatoes cv. Sweet Grape were harvested at breaker stage, divided into 4 grous and treated with gamma radiation (0.6 kGy), carnauba coating (1 L 1000 kg-1) and 1-MCP (500 nL L-1) and then stored at 25±2°C for 30 days with a control group of tomatoes. In the seconnd part, tomatoes harvested at light-red stage were submitted to the same treatments and storage period. Every 6 days tomatoes were evaluated for color modifications, fruit firmness, souble and total pectin (only for light-red tomatoes), mass loss, titratable acidity (TA), soluble solids (SS), SS/TA ratio, carotenoids profile, formation of lycopene isomers, total phenolic compounds, ascorbic acid and antioxidant capacity. For tomatoes harvested at breaker stage and submitted to the treatments the results showed mass loss was delaying mainly by carnauba wax, and to a lesser extend by 1-MCP. Fruit firmness were better retained for 1-MCP treated fruits and carnauba treatment showed a transient effect in preserving fruit firmness. SS/TA of tomatoes treated with gamma radiation and carnauba presented no differences from control values, and were lower with the application of 1-MCP. Color was negatively affected by 1-MCP and earlier changed (6th day) when gamma radiation was applied. In relation to bioactive compounds of tomatoes harvest at breaker stage, results indicated gamma radiation and 1-MCP decreased the final content of lycopene and produced more (Z)-isomers of lycopene. Gamma radiation also induced a decreased in ?-carotene and an increased in phenolic compounds by the end of storage period. 1-MCP treatment promoted a slow down increase in ascorbic acid content during storage. Antioxidant capacity of the hydrophilic fraction was not dramatically affected by treatments and the lipophilic fraction was lower, especially for 1-MCP fruits. In addition, contents of ?-carotene, lycopene, (Z)-isomers of lycopene, ascorbic acid and antioxidant capacity increased during the period of storage while contents of lutein and phenolic compounds tended to decrease. Regarding tomatoes harvest at light-red stage, the most effective treatments for delaying fruit firmness and mass loss was carnauba and 1-MCP, while gamma radiation was the treatment with higher mass loss and the less fruit firmness, which could be associated with the higher solubilization of pectins promoted by radiation treatment. Color (L* and Hue) was mainly affected by 1-MCP treatment which delayed color development, however, by the end of storage, the values were not different from the other treatments. SS/TA ratio was lower for fruits treated with 1-MCP and TA was not so dramatically affected by treatments. Furthermore, mini tomatoes harvested at light-red stage, demonstrated irradiation induced changes in the final content of lycopene, increasing it, and formed less (13Z)-lycopene, while 1-MCP and carnauba coating slow down the increase in lycopene and slown down the decrease of ascorbic acid and phenolic compounds. Antioxidant capacity of lipophilic fraction was not affected by treatments and the hydrophilic fraction was lower for irradiated fruits only on day 0 as well as phenolic compounds. In the other days, no differences among treatments were observed for hydrophilic antioxidant capacity. Considering the results, the best combination of SS and TA and fruit preservation for mini tomatoes harvest at breaker stage was promoted by carnauba coating, which seems to be the treatment that causes fewer changes in bioactive compounds of breaker tomatoes. However, when mini tomatoes were harvested at light-red stage, SS/TA ratio and color were better and, to preserve the quality of these fruits, besides carnauba coating, 1-MCP also could be indicated
Resumo:
The increasing economic competition drives the industry to implement tools that improve their processes efficiencies. The process automation is one of these tools, and the Real Time Optimization (RTO) is an automation methodology that considers economic aspects to update the process control in accordance with market prices and disturbances. Basically, RTO uses a steady-state phenomenological model to predict the process behavior, and then, optimizes an economic objective function subject to this model. Although largely implemented in industry, there is not a general agreement about the benefits of implementing RTO due to some limitations discussed in the present work: structural plant/model mismatch, identifiability issues and low frequency of set points update. Some alternative RTO approaches have been proposed in literature to handle the problem of structural plant/model mismatch. However, there is not a sensible comparison evaluating the scope and limitations of these RTO approaches under different aspects. For this reason, the classical two-step method is compared to more recently derivative-based methods (Modifier Adaptation, Integrated System Optimization and Parameter estimation, and Sufficient Conditions of Feasibility and Optimality) using a Monte Carlo methodology. The results of this comparison show that the classical RTO method is consistent, providing a model flexible enough to represent the process topology, a parameter estimation method appropriate to handle measurement noise characteristics and a method to improve the sample information quality. At each iteration, the RTO methodology updates some key parameter of the model, where it is possible to observe identifiability issues caused by lack of measurements and measurement noise, resulting in bad prediction ability. Therefore, four different parameter estimation approaches (Rotational Discrimination, Automatic Selection and Parameter estimation, Reparametrization via Differential Geometry and classical nonlinear Least Square) are evaluated with respect to their prediction accuracy, robustness and speed. The results show that the Rotational Discrimination method is the most suitable to be implemented in a RTO framework, since it requires less a priori information, it is simple to be implemented and avoid the overfitting caused by the Least Square method. The third RTO drawback discussed in the present thesis is the low frequency of set points update, this problem increases the period in which the process operates at suboptimum conditions. An alternative to handle this problem is proposed in this thesis, by integrating the classic RTO and Self-Optimizing control (SOC) using a new Model Predictive Control strategy. The new approach demonstrates that it is possible to reduce the problem of low frequency of set points updates, improving the economic performance. Finally, the practical aspects of the RTO implementation are carried out in an industrial case study, a Vapor Recompression Distillation (VRD) process located in Paulínea refinery from Petrobras. The conclusions of this study suggest that the model parameters are successfully estimated by the Rotational Discrimination method; the RTO is able to improve the process profit in about 3%, equivalent to 2 million dollars per year; and the integration of SOC and RTO may be an interesting control alternative for the VRD process.