2 resultados para Transfer coefficient
em Biblioteca de Teses e Dissertações da USP
Resumo:
Unripe banana flour (UBF) production employs bananas not submitted to maturation process, is an interesting alternative to minimize the fruit loss reduction related to inappropriate handling or fast ripening. The UBF is considered as a functional ingredient improving glycemic and plasma insulin levels in blood, have also shown efficacy on the control of satiety, insulin resistance. The aim of this work was to study the drying process of unripe banana slabs (Musa cavendishii, Nanicão) developing a transient drying model through mathematical modeling with simultaneous moisture and heat transfer. The raw material characterization was performed and afterwards the drying process was conducted at 40 ºC, 50 ºC e 60 ºC, the product temperature was recorded using thermocouples, the air velocity inside the chamber was 4 m·s-1. With the experimental data was possible to validate the diffusion model based on the Fick\'s second law and Fourier. For this purpose, the sorption isotherms were measured and fitted to the GAB model estimating the equilibrium moisture content (Xe), 1.76 [g H2O/100g d.b.] at 60 ºC and 10 % of relative humidity (RH), the thermophysical properties (k, Cp, ?) were also measured to be used in the model. Five cases were contemplated: i) Constant thermophysical properties; ii) Variable properties; iii) Mass (hm), heat transfer (h) coefficient and effective diffusivity (De) estimation 134 W·m-2·K-1, 4.91x10-5 m-2·s-1 and 3.278?10-10 m·s-2 at 60 ºC, respectively; iv) Variable De, it presented a third order polynomial behavior as function of moisture content; v) The shrinkage had an effect on the mathematical model, especially in the 3 first hours of process, the thickness experienced a contraction of about (30.34 ± 1.29) % out of the initial thickness, finding two decreasing drying rate periods (DDR I and DDR II), 3.28x10-10 m·s-2 and 1.77x10-10 m·s-2, respectively. COMSOL Multiphysics simulations were possible to perform through the heat and mass transfer coefficient estimated by the mathematical modeling.
Resumo:
Estudou-se o processo de absorção e dessorção de CO2 em solução aquosa da mistura de metildietanolamina (MDEA) e piperazina (PZ). Os ensaios de absorção foram realizados numa coluna de parede molhada com promotor de película, e, os ensaios de dessorção num sistema de semibatelada, ambos em escala de laboratório. Os testes experimentais de absorção foram realizados a 298 K e pressão atmosférica, com vazão de gás (CO2 e ar atmosférico) de 2,2.10-4 m3 s-1 e as seguintes vazões de líquido: 1,0.10-6; 1,3.10-6 e 1,7.10-6 m3 s-1. O sistema de absorção foi caracterizado através da determinação da área interfacial, a, o coeficiente volumétrico de transferência de massa, kGa, e o coeficiente volumétrico global médio de transferência de massa, KGa. No caso dos ensaios de dessorção, estes foram realizados nas temperaturas de 353, 363 e 368 K, onde empregou-se uma solução carbonatada de 10% PZ-20% MDEA e uma corrente de ar atmosférico nas vazões de 1,1.10-5 m3 s-1 e 2,7.10-5 m3 s-1. Este sistema foi caracterizado através da determinação do coeficiente volumétrico global de transferência de massa, KLa. Os resultados experimentais da área interfacial mostram que este é função da vazão do líquido, sugerindo uma maior área de irrigação como o aumento desta, onde teve-se uma maior área de transferência de massa. O resultado do parâmetro, KGa, indica uma dependência da vazão de líquido, a qual está associada à variação da área interfacial e à dependência do parâmetro KG com o perfil das concentrações da MDEA e PZ ao longo da coluna. A partir da teoria do duplo filme e pelo conhecimento dos parâmetros KGa, a e kGa, estimou-se um parâmetro cinético-difusivo associado à fase líquida, (( ) ) . Os resultados experimentais mostram que esse parâmetro varia pouco com a vazão de líquido, indicando tratar-se de um processo independente da hidrodinâmica do líquido, característico de sistemas com reação rápida. A concentração das aminas e carbamatos, nos ensaios de absorção e dessorção, foi determinada através dos modelos de calibração obtidas pela técnica de espectroscopia no infravermelho. Nos ensaios de absorção, foram observados que a concentração de PZ teve uma variação considerável (4 a 5% massa massa-1), entanto que a de MDEA variou pouco (0,3 a 0,5% massa massa-1), sugerindo que o processo de absorção de CO2 na mistura MDEA-PZ é controlado principalmente pela PZ, e supõe-se que a MDEA tem um papel de receptor de prótons procedentes da reação entre a PZ e o CO2. Nos ensaios de dessorção, observou-se que esse processo é afetado pela temperatura, sendo que, em temperaturas perto da ebulição (372 K), a taxa de dessorção de CO2 é maior do que em temperaturas menores, em certa forma é devido à dependência da velocidade de reação química com a temperatura. Os resultados do parâmetro KLa indicam que este diminui em função da concentração de carbamato de PZ (por exemplo, na temperatura de 368 K, de 7,5.10-4 a 1,0.10-4 s-1), devido a que este componente é decomposto em altas temperaturas gerando o CO2 e as aminas, sugerindo uma diminuição na velocidade de dessorção de CO2. Assim também, os resultados experimentais do parâmetro KLa indicam que este aumenta ligeiramente com a vazão do gás.