2 resultados para TiO2 nanotubular array electrodes
em Biblioteca de Teses e Dissertações da USP
Resumo:
Este trabalho apresenta o desenvolvimento de biossensores de pH, ureia e glicose, utilizando óxidos como plataforma para a parte seletiva. Os filmes finos de óxidos condutores foram produzidos por diferentes técnicas de deposição, como spin-coat, dip-coat, spray-pyrolysis e casting. Os materiais fabricados foram AZO e TiO2, ambos depositados sobre substratos de FTO, ITO ou vidro hidroflilizado. O número de camadas foi variado para cada técnica e as caracterizações morfológicas e estruturais foram feitas por MEV, DRX e FTIR. As caracterizações elétricas foram feitas por EGFET e voltametria cíclica. Os filmes foram testados como sensores de pHs na faixa de 2 a 8. O filme depositado com AZO em substrato de FTO pela técnica de spray-pyrolysis apresentou melhor resposta, com sensibilidade de 31,7 mV/pH entre toda a faixa de pHs do 2 ao 8. Já para os filmes de TiO2, o filme produzido por dip-coat com 5 camadas em substrato de FTO apresentou sensibilidade de 37,8 mV/pH entre a faixa de pHs de 2 a 8. Paralelamente, os filmes tiveram suas superfícies funcionalizadas com proteínas como urease ou glicose oxidase. Neste caso, os dispositivos foram testados entre as concentrações de 5 a 200 mg/dL de ureia e glicose. Como biossensor de ureia, o filme de TiO2 depositado por spin-coat com 5 camadas em substrato de FTO apresentou a maior sensibilidade, com valor 3,32 mV/(mg/dL) entre as concentrações de 5 a 120 mg/dL. Para os filmes estudados como biossensores de glicose, o melhor resultado também foi obtido pelo filme de TiO2 depositado por spin-coat com 5 camadas em substrato de FTO, apresentando sensibilidade em torno de 6,18 mV/(mg/dL) entre as concentrações de 5 a 200 mg/dL. Alguns resultados encontrados foram iguais ou melhores aos encontrados na literatura vigente, mesmo que os dispositivos ainda são passíveis de otimização.
Resumo:
A aquisição experimental de sinais neuronais é um dos principais avanços da neurociência. Por meio de observações da corrente e do potencial elétricos em uma região cerebral, é possível entender os processos fisiológicos envolvidos na geração do potencial de ação, e produzir modelos matemáticos capazes de simular o comportamento de uma célula neuronal. Uma prática comum nesse tipo de experimento é obter leituras a partir de um arranjo de eletrodos posicionado em um meio compartilhado por diversos neurônios, o que resulta em uma mistura de sinais neuronais em uma mesma série temporal. Este trabalho propõe um modelo linear de tempo discreto para o sinal produzido durante o disparo do neurônio. Os coeficientes desse modelo são calculados utilizando-se amostras reais dos sinais neuronais obtidas in vivo. O processo de modelagem concebido emprega técnicas de identificação de sistemas e processamento de sinais, e é dissociado de considerações sobre o funcionamento biofísico da célula, fornecendo uma alternativa de baixa complexidade para a modelagem do disparo neuronal. Além disso, a representação por meio de sistemas lineares permite idealizar um sistema inverso, cuja função é recuperar o sinal original de cada neurônio ativo em uma mistura extracelular. Nesse contexto, são discutidas algumas soluções baseadas em filtros adaptativos para a simulação do sistema inverso, introduzindo uma nova abordagem para o problema de separação de spikes neuronais.