1 resultado para Threat conditioning
em Biblioteca de Teses e Dissertações da USP
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (13)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (15)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Bioline International (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Boston University Digital Common (2)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (9)
- CentAUR: Central Archive University of Reading - UK (49)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (9)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (9)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (38)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (15)
- Indian Institute of Science - Bangalore - Índia (7)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (55)
- Queensland University of Technology - ePrints Archive (371)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (61)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (4)
- South Carolina State Documents Depository (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (2)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (4)
- University of Michigan (48)
- University of Queensland eSpace - Australia (32)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
We evaluate the use of Generalized Empirical Likelihood (GEL) estimators in portfolios efficiency tests for asset pricing models in the presence of conditional information. Estimators from GEL family presents some optimal statistical properties, such as robustness to misspecification and better properties in finite samples. Unlike GMM, the bias for GEL estimators do not increase as more moment conditions are included, which is expected in conditional efficiency analysis. We found some evidences that estimators from GEL class really performs differently in small samples, where efficiency tests using GEL generate lower estimates compared to tests using the standard approach with GMM. With Monte Carlo experiments we see that GEL has better performance when distortions are present in data, especially under heavy tails and Gaussian shocks.